Reducing Generalization Error Using Autoencoders for The Detection of Computer Worms

This paper discusses computer worm detection using machine learning. More specifically, the generalization capability of autoencoders is investigated and improved using regularization and deep autoencoders. Models are constructed first without autoencoders and thereafter with autoencoders. The model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer engineering and applications journal 2020-10, Vol.9 (3), p.175-182
Hauptverfasser: Odunga, Nelson Ochieng, Mwangi, Ronald Waweru, Lukandu, Ismail Ateya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses computer worm detection using machine learning. More specifically, the generalization capability of autoencoders is investigated and improved using regularization and deep autoencoders. Models are constructed first without autoencoders and thereafter with autoencoders. The models with autoencoders are further improved using regularization and deep autoencoders. Results show an improved in the capability of models to generalize well to new examples.  
ISSN:2252-4274
2252-5459
DOI:10.18495/comengapp.v9i3.348