A Variable Ionized Disk Wind in the Black Hole Candidate EXO 1846-031
After 34 yr, the black hole candidate EXO 1846-031 went into outburst again in 2019. We investigate its spectral properties in the hard intermediate and the soft states with NuSTAR and Insight-HXMT. A reflection component has been detected in the two spectral states but possibly originating from dif...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-01, Vol.906 (1), p.11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After 34 yr, the black hole candidate EXO 1846-031 went into outburst again in 2019. We investigate its spectral properties in the hard intermediate and the soft states with NuSTAR and Insight-HXMT. A reflection component has been detected in the two spectral states but possibly originating from different illumination spectra: in the intermediate state, the illuminating source is attributed to a hard coronal component, which has been commonly observed in other X-ray binaries, whereas in the soft state, the reflection is probably produced by disk self-irradiation. Both cases support EXO 1846-031 as a low-inclination system of . An absorption line is clearly detected at ∼7.2 keV in the hard intermediate state, corresponding to a highly ionized disk wind ( ) with a velocity of up to 0.06c. Meanwhile, quasi-simultaneous radio emissions have been detected before and after the X-rays, implying the coexistence of disk winds and jets in this system. If only the high-flux segment of the NuSTAR observation is considered, the observed wind appears to be magnetically driven. The absorption line disappeared in the soft state and a narrow emission line appeared at ∼6.7 keV on top of the reflection component, which may be evidence for disk winds, but data with higher spectral resolution are required to examine this. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/abc55e |