Rademacher expansions and the spectrum of 2d CFT

A bstract A classical result from analytic number theory by Rademacher gives an exact formula for the Fourier coefficients of modular forms of non-positive weight. We apply similar techniques to study the spectrum of two-dimensional unitary conformal field theories, with no extended chiral algebra a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-11, Vol.2020 (11), Article 134
Hauptverfasser: Alday, Luis F., Bae, Jin-Beom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract A classical result from analytic number theory by Rademacher gives an exact formula for the Fourier coefficients of modular forms of non-positive weight. We apply similar techniques to study the spectrum of two-dimensional unitary conformal field theories, with no extended chiral algebra and c > 1. By exploiting the full modular constraints of the partition function we propose an expression for the spectral density in terms of the light spectrum of the theory. The expression is given in terms of a Rademacher expansion, which converges for spin j ≠ 0. For a finite number of light operators the expression agrees with a variant of the Poincare construction developed by Maloney, Witten and Keller. With this framework we study the presence of negative density of states in the partition function dual to pure gravity, and propose a scenario to cure this negativity.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP11(2020)134