Dirac Polarons and Resistivity Anomaly in ZrTe5 and HfTe5

Resistivity anomaly, a sharp peak of resistivity at finite temperatures, in the transition-metal pentatellurides ZrTe5 and HfTe5 was observed four decades ago, and more exotic and anomalous behaviors of electric and thermoelectric transport were revealed in recent years. Here, we present a theory of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-12, Vol.125 (25), p.1, Article 256601
Hauptverfasser: Fu, Bo, Wang, Huan-Wen, Shen, Shun-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistivity anomaly, a sharp peak of resistivity at finite temperatures, in the transition-metal pentatellurides ZrTe5 and HfTe5 was observed four decades ago, and more exotic and anomalous behaviors of electric and thermoelectric transport were revealed in recent years. Here, we present a theory of Dirac polarons, composed by massive Dirac electrons and holes in an encircling cloud of lattice displacements or phonons at finite temperatures. The chemical potential of Dirac polarons sweeps the band gap of the topological band structure by increasing the temperature, leading to the resistivity anomaly. Formation of a nearly neutral state of Dirac polarons accounts for the anomalous behaviors of the electric and thermoelectric resistivity around the peak of resistivity.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.125.256601