Brouwer’s Weak Counterexamples and the Creative Subject: A Critical Survey
I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering (i) what useful mathematical work is done by weak counterexamples; (ii) whether they are rigorous mathematical proofs or just plausibility arguments; (iii) the role of Brouwer’s notion of the creative subject i...
Gespeichert in:
Veröffentlicht in: | Journal of philosophical logic 2020-12, Vol.49 (6), p.1111-1157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1157 |
---|---|
container_issue | 6 |
container_start_page | 1111 |
container_title | Journal of philosophical logic |
container_volume | 49 |
creator | Fletcher, Peter |
description | I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering (i) what useful mathematical work is done by weak counterexamples; (ii) whether they are rigorous mathematical proofs or just plausibility arguments; (iii) the role of Brouwer’s notion of the creative subject in them, and whether the creative subject is really necessary for them; (iv) what axioms for the creative subject are needed; (v) what relation there is between these arguments and Brouwer’s theory of choice sequences. I refute one of Brouwer’s claims with a weak counterexample of my own. I also examine Brouwer’s 1927 proof of the negative continuity theorem, which appears to be a weak counterexample reliant on both the creative subject and the concept of choice sequence; I argue that it provides a good justification for the weak continuity principle, but it is not a weak counterexample and it does not depend essentially on the creative subject. |
doi_str_mv | 10.1007/s10992-020-09551-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473377343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473377343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-6486a2ff55fe4d670a9863a3c0918226d87f262f6091bea425b273f2458d3d863</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEiVwAVaRWBvGdmIn7ErEn1SJBSCWlpuMIaVNip0UsuMaXI-TYAgSO1ajeXrvjeYj5JDBMQNQJ55BnnMKHCjkacrosEUmLFWCQiLENpkAcE6FZGyX7Hm_AICMCTUhszPX9q_oPt8_fPyA5jku2r7p0OGbWa2X6GPTVHH3hHHh0HT1BuPbfr7AsjuNp0Gru7o0y6C5DQ77ZMeapceD3xmR-4vzu-KKzm4ur4vpjJaCJR2VSSYNtzZNLSaVVGDyTAojSshZxrmsMmW55FaGfY4m4emcK2F5kmaVqII1Ikdj79q1Lz36Ti_a3jXhpOaJEkIpEb6OCB9dpWu9d2j12tUr4wbNQH9T0yM1HajpH2p6CCExhnwwN4_o_qr_SX0BTS9vsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473377343</pqid></control><display><type>article</type><title>Brouwer’s Weak Counterexamples and the Creative Subject: A Critical Survey</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fletcher, Peter</creator><creatorcontrib>Fletcher, Peter</creatorcontrib><description>I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering (i) what useful mathematical work is done by weak counterexamples; (ii) whether they are rigorous mathematical proofs or just plausibility arguments; (iii) the role of Brouwer’s notion of the creative subject in them, and whether the creative subject is really necessary for them; (iv) what axioms for the creative subject are needed; (v) what relation there is between these arguments and Brouwer’s theory of choice sequences. I refute one of Brouwer’s claims with a weak counterexample of my own. I also examine Brouwer’s 1927 proof of the negative continuity theorem, which appears to be a weak counterexample reliant on both the creative subject and the concept of choice sequence; I argue that it provides a good justification for the weak continuity principle, but it is not a weak counterexample and it does not depend essentially on the creative subject.</description><identifier>ISSN: 0022-3611</identifier><identifier>EISSN: 1573-0433</identifier><identifier>DOI: 10.1007/s10992-020-09551-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Creativity ; Education ; Hypotheses ; Logic ; Mathematics ; Philosophy ; Polls & surveys ; Theorems</subject><ispartof>Journal of philosophical logic, 2020-12, Vol.49 (6), p.1111-1157</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-6486a2ff55fe4d670a9863a3c0918226d87f262f6091bea425b273f2458d3d863</cites><orcidid>0000-0002-6183-0265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10992-020-09551-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10992-020-09551-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fletcher, Peter</creatorcontrib><title>Brouwer’s Weak Counterexamples and the Creative Subject: A Critical Survey</title><title>Journal of philosophical logic</title><addtitle>J Philos Logic</addtitle><description>I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering (i) what useful mathematical work is done by weak counterexamples; (ii) whether they are rigorous mathematical proofs or just plausibility arguments; (iii) the role of Brouwer’s notion of the creative subject in them, and whether the creative subject is really necessary for them; (iv) what axioms for the creative subject are needed; (v) what relation there is between these arguments and Brouwer’s theory of choice sequences. I refute one of Brouwer’s claims with a weak counterexample of my own. I also examine Brouwer’s 1927 proof of the negative continuity theorem, which appears to be a weak counterexample reliant on both the creative subject and the concept of choice sequence; I argue that it provides a good justification for the weak continuity principle, but it is not a weak counterexample and it does not depend essentially on the creative subject.</description><subject>Creativity</subject><subject>Education</subject><subject>Hypotheses</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Philosophy</subject><subject>Polls & surveys</subject><subject>Theorems</subject><issn>0022-3611</issn><issn>1573-0433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1OwzAQhS0EEiVwAVaRWBvGdmIn7ErEn1SJBSCWlpuMIaVNip0UsuMaXI-TYAgSO1ajeXrvjeYj5JDBMQNQJ55BnnMKHCjkacrosEUmLFWCQiLENpkAcE6FZGyX7Hm_AICMCTUhszPX9q_oPt8_fPyA5jku2r7p0OGbWa2X6GPTVHH3hHHh0HT1BuPbfr7AsjuNp0Gru7o0y6C5DQ77ZMeapceD3xmR-4vzu-KKzm4ur4vpjJaCJR2VSSYNtzZNLSaVVGDyTAojSshZxrmsMmW55FaGfY4m4emcK2F5kmaVqII1Ikdj79q1Lz36Ti_a3jXhpOaJEkIpEb6OCB9dpWu9d2j12tUr4wbNQH9T0yM1HajpH2p6CCExhnwwN4_o_qr_SX0BTS9vsg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Fletcher, Peter</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6183-0265</orcidid></search><sort><creationdate>20201201</creationdate><title>Brouwer’s Weak Counterexamples and the Creative Subject: A Critical Survey</title><author>Fletcher, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-6486a2ff55fe4d670a9863a3c0918226d87f262f6091bea425b273f2458d3d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Creativity</topic><topic>Education</topic><topic>Hypotheses</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Philosophy</topic><topic>Polls & surveys</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fletcher, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences & Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Access via Art, Design & Architecture Collection (ProQuest)</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts & Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of philosophical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fletcher, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brouwer’s Weak Counterexamples and the Creative Subject: A Critical Survey</atitle><jtitle>Journal of philosophical logic</jtitle><stitle>J Philos Logic</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>49</volume><issue>6</issue><spage>1111</spage><epage>1157</epage><pages>1111-1157</pages><issn>0022-3611</issn><eissn>1573-0433</eissn><abstract>I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering (i) what useful mathematical work is done by weak counterexamples; (ii) whether they are rigorous mathematical proofs or just plausibility arguments; (iii) the role of Brouwer’s notion of the creative subject in them, and whether the creative subject is really necessary for them; (iv) what axioms for the creative subject are needed; (v) what relation there is between these arguments and Brouwer’s theory of choice sequences. I refute one of Brouwer’s claims with a weak counterexample of my own. I also examine Brouwer’s 1927 proof of the negative continuity theorem, which appears to be a weak counterexample reliant on both the creative subject and the concept of choice sequence; I argue that it provides a good justification for the weak continuity principle, but it is not a weak counterexample and it does not depend essentially on the creative subject.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10992-020-09551-y</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0002-6183-0265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3611 |
ispartof | Journal of philosophical logic, 2020-12, Vol.49 (6), p.1111-1157 |
issn | 0022-3611 1573-0433 |
language | eng |
recordid | cdi_proquest_journals_2473377343 |
source | JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Creativity Education Hypotheses Logic Mathematics Philosophy Polls & surveys Theorems |
title | Brouwer’s Weak Counterexamples and the Creative Subject: A Critical Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brouwer%E2%80%99s%20Weak%20Counterexamples%20and%20the%20Creative%20Subject:%20A%20Critical%20Survey&rft.jtitle=Journal%20of%20philosophical%20logic&rft.au=Fletcher,%20Peter&rft.date=2020-12-01&rft.volume=49&rft.issue=6&rft.spage=1111&rft.epage=1157&rft.pages=1111-1157&rft.issn=0022-3611&rft.eissn=1573-0433&rft_id=info:doi/10.1007/s10992-020-09551-y&rft_dat=%3Cproquest_cross%3E2473377343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473377343&rft_id=info:pmid/&rfr_iscdi=true |