Brouwer’s Weak Counterexamples and the Creative Subject: A Critical Survey
I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering (i) what useful mathematical work is done by weak counterexamples; (ii) whether they are rigorous mathematical proofs or just plausibility arguments; (iii) the role of Brouwer’s notion of the creative subject i...
Gespeichert in:
Veröffentlicht in: | Journal of philosophical logic 2020-12, Vol.49 (6), p.1111-1157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I survey Brouwer’s weak counterexamples to classical theorems, with a view to discovering (i) what useful mathematical work is done by weak counterexamples; (ii) whether they are rigorous mathematical proofs or just plausibility arguments; (iii) the role of Brouwer’s notion of the creative subject in them, and whether the creative subject is really necessary for them; (iv) what axioms for the creative subject are needed; (v) what relation there is between these arguments and Brouwer’s theory of choice sequences. I refute one of Brouwer’s claims with a weak counterexample of my own. I also examine Brouwer’s 1927 proof of the negative continuity theorem, which appears to be a weak counterexample reliant on both the creative subject and the concept of choice sequence; I argue that it provides a good justification for the weak continuity principle, but it is not a weak counterexample and it does not depend essentially on the creative subject. |
---|---|
ISSN: | 0022-3611 1573-0433 |
DOI: | 10.1007/s10992-020-09551-y |