Numerical analysis of reinforced embankment slopes made up of pozzolanic waste materials
The paper presents the numerical study of the bearing capacity behavior of the model footing placed on the top of reinforced embankment slopes made up of Pozzolanic waste materials such as fly ash and ground granulated blast furnace slag (GGBFS). The present investigation is aimed at studying the ef...
Gespeichert in:
Veröffentlicht in: | International journal of geo-engineering 2020-12, Vol.11 (1), Article 19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents the numerical study of the bearing capacity behavior of the model footing placed on the top of reinforced embankment slopes made up of Pozzolanic waste materials such as fly ash and ground granulated blast furnace slag (GGBFS). The present investigation is aimed at studying the efficacy of the different types of reinforcement (geogrid and rubbergrid) in improving the load bearing capacity of the embankment slopes made up of waste materials. The effect of various parameters such as slope angle, location of the footing with slope crest, embedment depth of the reinforcement is studied on the strength behavior of the embankment. The analysis is carried out on unreinforced fly ash and GGBFS embankments for three slope angles and three locations of the footing with respect to slope crest, i.e., edge distance. The fly ash slopes reinforced with geogrid and rubber grid reinforcement is also analyzed for all the three slope angles and edge distances as that in unreinforced fly ash embankment slope and further, for various embedment depths of the layer of reinforcement. The GGBFS embankment reinforced with geogrid layer is analyzed with respect to critical slope angle and edge distance and optimum embedment depth of the reinforcement deduced from the unreinforced fly ash and GGBFS embankment and reinforced fly ash embankment. The analysis demonstrated that the load carrying capacity of the embankment slope decreases with increase in slope angle and edge distance in respect of unreinforced and reinforced fly ash slope and the optimum embedment depth ratio seems to be 1.2. Further, the rubbergrid reinforcement is found to perform better than the geogrid. The performance of geogrid reinforced GGBFS embankment is also noteworthy. The study underscores the effective utilization of Pozzolanic waste materials as the embankment slope and the rubbergrid derived out of discarded tyres. |
---|---|
ISSN: | 2092-9196 2198-2783 |
DOI: | 10.1186/s40703-020-00126-z |