Dynamic response of the spherical pendulum subjected to horizontal Lissajous excitation

This paper examines the oscillations of a spherical pendulum with horizontal Lissajous excitation. The pendulum has two degrees of freedom: a rotational angle defined in the horizontal plane and an inclination angle defined by the pendulum with respect to the vertical z axis. The results of numerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-12, Vol.102 (4), p.2125-2142
Hauptverfasser: Litak, Grzegorz, Margielewicz, Jerzy, Gąska, Damian, Yurchenko, Daniil, Dąbek, Krzysztof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the oscillations of a spherical pendulum with horizontal Lissajous excitation. The pendulum has two degrees of freedom: a rotational angle defined in the horizontal plane and an inclination angle defined by the pendulum with respect to the vertical z axis. The results of numerical simulations are illustrated with the mathematical model in the form of multi-colored maps of the largest Lyapunov exponent. The graphical images of geometrical structures of the attractors placed on Poincaré cross sections are shown against the maps of the resolution density of the trajectory points passing through a control plane. Drawn for a steady-state, the graphical images of the trajectory of a tip mass are shown in a three-dimensional space. The obtained trajectories of the moving tip mass are referred to a constructed bifurcation diagram.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-020-06023-5