The mechanism of negative linear thermal expansion behavior of cold-rolled Ti-34Nb alloy

The mechanism of negative linear thermal expansion (NLTE) of Ti-34Nb (wt.%) alloy after 90% cold rolling is investigated by X-ray diffraction, thermal expansion and transmission electron microscopy. From the results, it is observed that 90% cold-rolled Ti-34Nb alloy is composed of β and α″ (Martensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-03, Vol.56 (8), p.5190-5200
Hauptverfasser: Wu, Xiangwei, Zou, Wenqian, Huang, Jindu, Wu, Yulong, Luo, Cong, Lan, Chunbo, Chen, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5200
container_issue 8
container_start_page 5190
container_title Journal of materials science
container_volume 56
creator Wu, Xiangwei
Zou, Wenqian
Huang, Jindu
Wu, Yulong
Luo, Cong
Lan, Chunbo
Chen, Feng
description The mechanism of negative linear thermal expansion (NLTE) of Ti-34Nb (wt.%) alloy after 90% cold rolling is investigated by X-ray diffraction, thermal expansion and transmission electron microscopy. From the results, it is observed that 90% cold-rolled Ti-34Nb alloy is composed of β and α″ (Martensite) phases with the existence of   β and   α″ textures along rolling direction (RD). The cyclic thermal expansion, XRD and TEM studies show that when the thermal cycle temperature is at 100 °C, the RD of 90% cold-rolled Ti-34Nb alloy performs a reversible NLTE, which gradually weakens when thermal cycle temperature is at 300 °C, attributing to the gradual decomposition of α″-phase. When thermal cycle temperature rises to 380 °C, the reversible NLTE disappears and turns into positive linear thermal expansion, meanwhile, α″-phase decomposes completely. Based on the formation of β and α″ textures by cold rolling and α″ ↔ β thermo-reversible transformation mechanism, the NLTE mechanism of 90% cold-rolled Ti-34Nb alloy is successfully explained. Moreover, according to the present results, a novel strategy is proposed to tailoring the negative coefficient of linear thermal expansion by changing α″ content, which improves the application potential of Ti alloys.
doi_str_mv 10.1007/s10853-020-05574-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473336862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650488112</galeid><sourcerecordid>A650488112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-bfc230e14748a7e6593fea5bf121bf212edd513478477b27bb25c147aecc2213</originalsourceid><addsrcrecordid>eNp9kc9LHTEQx0Ox0KftP9BToCcP0fzcrEcRtYK00L5DbyGbnbwXySavyT7R_968riBeyhwGhs9nZuCL0FdGzxil-rwy2itBKKeEKqUl0R_QiiktiOypOEIrSjknXHbsEzqu9YFSqjRnK_RnvQU8gdvaFOqEs8cJNnYOj4BjSGALnrdQJhsxPO1sqiEnPMDWPoZcDrTLcSQlxwgjXgci5I8B2xjz82f00dtY4ctrP0Hrm-v11Xdy__P27urynjhxwWcyeMcFBSa17K2GTl0ID1YNnnE2eM44jKNiQupeaj1wPQxcuUZbcI5zJk7Qt2XtruS_e6izecj7ktpFw6UWQnR9xxt1tlAbG8GE5PNcrGs1whRcTuBDm192isq-Z-wgnL4TGjPD07yx-1rN3e9f71m-sK7kWgt4sythsuXZMGoO6ZglHdPSMf_SMbpJYpFqg9MGytvf_7FeADxNkFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473336862</pqid></control><display><type>article</type><title>The mechanism of negative linear thermal expansion behavior of cold-rolled Ti-34Nb alloy</title><source>Springer Nature - Complete Springer Journals</source><creator>Wu, Xiangwei ; Zou, Wenqian ; Huang, Jindu ; Wu, Yulong ; Luo, Cong ; Lan, Chunbo ; Chen, Feng</creator><creatorcontrib>Wu, Xiangwei ; Zou, Wenqian ; Huang, Jindu ; Wu, Yulong ; Luo, Cong ; Lan, Chunbo ; Chen, Feng</creatorcontrib><description>The mechanism of negative linear thermal expansion (NLTE) of Ti-34Nb (wt.%) alloy after 90% cold rolling is investigated by X-ray diffraction, thermal expansion and transmission electron microscopy. From the results, it is observed that 90% cold-rolled Ti-34Nb alloy is composed of β and α″ (Martensite) phases with the existence of &lt; 110 &gt;  β and &lt; 010 &gt;  α″ textures along rolling direction (RD). The cyclic thermal expansion, XRD and TEM studies show that when the thermal cycle temperature is at 100 °C, the RD of 90% cold-rolled Ti-34Nb alloy performs a reversible NLTE, which gradually weakens when thermal cycle temperature is at 300 °C, attributing to the gradual decomposition of α″-phase. When thermal cycle temperature rises to 380 °C, the reversible NLTE disappears and turns into positive linear thermal expansion, meanwhile, α″-phase decomposes completely. Based on the formation of β and α″ textures by cold rolling and α″ ↔ β thermo-reversible transformation mechanism, the NLTE mechanism of 90% cold-rolled Ti-34Nb alloy is successfully explained. Moreover, according to the present results, a novel strategy is proposed to tailoring the negative coefficient of linear thermal expansion by changing α″ content, which improves the application potential of Ti alloys.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05574-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cold ; Cold rolling ; Crystallography and Scattering Methods ; Decomposition ; Diffraction ; Martensite ; Materials Science ; Metals &amp; Corrosion ; Polymer Sciences ; Rolling direction ; Solid Mechanics ; Specialty metals industry ; Thermal expansion ; Titanium alloys ; Titanium base alloys ; X-rays</subject><ispartof>Journal of materials science, 2021-03, Vol.56 (8), p.5190-5200</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-bfc230e14748a7e6593fea5bf121bf212edd513478477b27bb25c147aecc2213</citedby><cites>FETCH-LOGICAL-c392t-bfc230e14748a7e6593fea5bf121bf212edd513478477b27bb25c147aecc2213</cites><orcidid>0000-0002-9630-8872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05574-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05574-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Xiangwei</creatorcontrib><creatorcontrib>Zou, Wenqian</creatorcontrib><creatorcontrib>Huang, Jindu</creatorcontrib><creatorcontrib>Wu, Yulong</creatorcontrib><creatorcontrib>Luo, Cong</creatorcontrib><creatorcontrib>Lan, Chunbo</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>The mechanism of negative linear thermal expansion behavior of cold-rolled Ti-34Nb alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The mechanism of negative linear thermal expansion (NLTE) of Ti-34Nb (wt.%) alloy after 90% cold rolling is investigated by X-ray diffraction, thermal expansion and transmission electron microscopy. From the results, it is observed that 90% cold-rolled Ti-34Nb alloy is composed of β and α″ (Martensite) phases with the existence of &lt; 110 &gt;  β and &lt; 010 &gt;  α″ textures along rolling direction (RD). The cyclic thermal expansion, XRD and TEM studies show that when the thermal cycle temperature is at 100 °C, the RD of 90% cold-rolled Ti-34Nb alloy performs a reversible NLTE, which gradually weakens when thermal cycle temperature is at 300 °C, attributing to the gradual decomposition of α″-phase. When thermal cycle temperature rises to 380 °C, the reversible NLTE disappears and turns into positive linear thermal expansion, meanwhile, α″-phase decomposes completely. Based on the formation of β and α″ textures by cold rolling and α″ ↔ β thermo-reversible transformation mechanism, the NLTE mechanism of 90% cold-rolled Ti-34Nb alloy is successfully explained. Moreover, according to the present results, a novel strategy is proposed to tailoring the negative coefficient of linear thermal expansion by changing α″ content, which improves the application potential of Ti alloys.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cold</subject><subject>Cold rolling</subject><subject>Crystallography and Scattering Methods</subject><subject>Decomposition</subject><subject>Diffraction</subject><subject>Martensite</subject><subject>Materials Science</subject><subject>Metals &amp; Corrosion</subject><subject>Polymer Sciences</subject><subject>Rolling direction</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Thermal expansion</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9LHTEQx0Ox0KftP9BToCcP0fzcrEcRtYK00L5DbyGbnbwXySavyT7R_968riBeyhwGhs9nZuCL0FdGzxil-rwy2itBKKeEKqUl0R_QiiktiOypOEIrSjknXHbsEzqu9YFSqjRnK_RnvQU8gdvaFOqEs8cJNnYOj4BjSGALnrdQJhsxPO1sqiEnPMDWPoZcDrTLcSQlxwgjXgci5I8B2xjz82f00dtY4ctrP0Hrm-v11Xdy__P27urynjhxwWcyeMcFBSa17K2GTl0ID1YNnnE2eM44jKNiQupeaj1wPQxcuUZbcI5zJk7Qt2XtruS_e6izecj7ktpFw6UWQnR9xxt1tlAbG8GE5PNcrGs1whRcTuBDm192isq-Z-wgnL4TGjPD07yx-1rN3e9f71m-sK7kWgt4sythsuXZMGoO6ZglHdPSMf_SMbpJYpFqg9MGytvf_7FeADxNkFg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wu, Xiangwei</creator><creator>Zou, Wenqian</creator><creator>Huang, Jindu</creator><creator>Wu, Yulong</creator><creator>Luo, Cong</creator><creator>Lan, Chunbo</creator><creator>Chen, Feng</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9630-8872</orcidid></search><sort><creationdate>20210301</creationdate><title>The mechanism of negative linear thermal expansion behavior of cold-rolled Ti-34Nb alloy</title><author>Wu, Xiangwei ; Zou, Wenqian ; Huang, Jindu ; Wu, Yulong ; Luo, Cong ; Lan, Chunbo ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-bfc230e14748a7e6593fea5bf121bf212edd513478477b27bb25c147aecc2213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cold</topic><topic>Cold rolling</topic><topic>Crystallography and Scattering Methods</topic><topic>Decomposition</topic><topic>Diffraction</topic><topic>Martensite</topic><topic>Materials Science</topic><topic>Metals &amp; Corrosion</topic><topic>Polymer Sciences</topic><topic>Rolling direction</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Thermal expansion</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiangwei</creatorcontrib><creatorcontrib>Zou, Wenqian</creatorcontrib><creatorcontrib>Huang, Jindu</creatorcontrib><creatorcontrib>Wu, Yulong</creatorcontrib><creatorcontrib>Luo, Cong</creatorcontrib><creatorcontrib>Lan, Chunbo</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiangwei</au><au>Zou, Wenqian</au><au>Huang, Jindu</au><au>Wu, Yulong</au><au>Luo, Cong</au><au>Lan, Chunbo</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of negative linear thermal expansion behavior of cold-rolled Ti-34Nb alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>56</volume><issue>8</issue><spage>5190</spage><epage>5200</epage><pages>5190-5200</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The mechanism of negative linear thermal expansion (NLTE) of Ti-34Nb (wt.%) alloy after 90% cold rolling is investigated by X-ray diffraction, thermal expansion and transmission electron microscopy. From the results, it is observed that 90% cold-rolled Ti-34Nb alloy is composed of β and α″ (Martensite) phases with the existence of &lt; 110 &gt;  β and &lt; 010 &gt;  α″ textures along rolling direction (RD). The cyclic thermal expansion, XRD and TEM studies show that when the thermal cycle temperature is at 100 °C, the RD of 90% cold-rolled Ti-34Nb alloy performs a reversible NLTE, which gradually weakens when thermal cycle temperature is at 300 °C, attributing to the gradual decomposition of α″-phase. When thermal cycle temperature rises to 380 °C, the reversible NLTE disappears and turns into positive linear thermal expansion, meanwhile, α″-phase decomposes completely. Based on the formation of β and α″ textures by cold rolling and α″ ↔ β thermo-reversible transformation mechanism, the NLTE mechanism of 90% cold-rolled Ti-34Nb alloy is successfully explained. Moreover, according to the present results, a novel strategy is proposed to tailoring the negative coefficient of linear thermal expansion by changing α″ content, which improves the application potential of Ti alloys.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05574-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9630-8872</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-03, Vol.56 (8), p.5190-5200
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2473336862
source Springer Nature - Complete Springer Journals
subjects Alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Cold
Cold rolling
Crystallography and Scattering Methods
Decomposition
Diffraction
Martensite
Materials Science
Metals & Corrosion
Polymer Sciences
Rolling direction
Solid Mechanics
Specialty metals industry
Thermal expansion
Titanium alloys
Titanium base alloys
X-rays
title The mechanism of negative linear thermal expansion behavior of cold-rolled Ti-34Nb alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20negative%20linear%20thermal%20expansion%20behavior%20of%20cold-rolled%20Ti-34Nb%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wu,%20Xiangwei&rft.date=2021-03-01&rft.volume=56&rft.issue=8&rft.spage=5190&rft.epage=5200&rft.pages=5190-5200&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05574-7&rft_dat=%3Cgale_proqu%3EA650488112%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473336862&rft_id=info:pmid/&rft_galeid=A650488112&rfr_iscdi=true