The mechanism of negative linear thermal expansion behavior of cold-rolled Ti-34Nb alloy
The mechanism of negative linear thermal expansion (NLTE) of Ti-34Nb (wt.%) alloy after 90% cold rolling is investigated by X-ray diffraction, thermal expansion and transmission electron microscopy. From the results, it is observed that 90% cold-rolled Ti-34Nb alloy is composed of β and α″ (Martensi...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-03, Vol.56 (8), p.5190-5200 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanism of negative linear thermal expansion (NLTE) of Ti-34Nb (wt.%) alloy after 90% cold rolling is investigated by X-ray diffraction, thermal expansion and transmission electron microscopy. From the results, it is observed that 90% cold-rolled Ti-34Nb alloy is composed of β and α″ (Martensite) phases with the existence of
β
and
α″
textures along rolling direction (RD). The cyclic thermal expansion, XRD and TEM studies show that when the thermal cycle temperature is at 100 °C, the RD of 90% cold-rolled Ti-34Nb alloy performs a reversible NLTE, which gradually weakens when thermal cycle temperature is at 300 °C, attributing to the gradual decomposition of α″-phase. When thermal cycle temperature rises to 380 °C, the reversible NLTE disappears and turns into positive linear thermal expansion, meanwhile, α″-phase decomposes completely. Based on the formation of β and α″ textures by cold rolling and α″
↔
β thermo-reversible transformation mechanism, the NLTE mechanism of 90% cold-rolled Ti-34Nb alloy is successfully explained. Moreover, according to the present results, a novel strategy is proposed to tailoring the negative coefficient of linear thermal expansion by changing α″ content, which improves the application potential of Ti alloys. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-020-05574-7 |