Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network
Memristors are widely considered to be promising candidates to mimic biological synapses. In this paper, by introducing a non-ideal flux-controlled memristor model into a Hopfield neural network (HNN), a novel memristive HNN model with multi-double-scroll attractors is constructed. The parity of the...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2020-12, Vol.102 (4), p.2821-2841 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Memristors are widely considered to be promising candidates to mimic biological synapses. In this paper, by introducing a non-ideal flux-controlled memristor model into a Hopfield neural network (HNN), a novel memristive HNN model with multi-double-scroll attractors is constructed. The parity of the number of double scrolls can be flexibly controlled by the internal parameters of the memristor. Through theoretical analysis and numerical simulation, various coexisting attractors and amplitude control are observed. Particularly, the interesting and rare phenomenon of the memristor initial offset boosting coexisting dynamics is discovered, in which the initial offset boosting coexisting double-scroll attractors with banded attraction basins are distributed in a line along the boosting route with the variation of the memristor initial condition. In addition, it is also found that the number of the initial offset boosting coexisting double-scroll attractors is closely related to the total number of scrolls and ultimately tends to infinity with increasing the total number of scrolls, meaning the emergence of extreme multistability. Then, the random performance of the initial offset boosting coexisting double-scroll attractors is tested by the NIST test suite. Moreover, an encryption scheme based on them is also proposed. The obtained results show that they have excellent randomness and are suitable for image encryption application. Finally, numerical simulation results are well demonstrated by circuit experiments, showing the feasibility of the designed memristive multi-double-scroll HNN model. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-020-06072-w |