Crowding and the shape of COVID-19 epidemics

The coronavirus disease 2019 (COVID-19) pandemic is straining public health systems worldwide, and major non-pharmaceutical interventions have been implemented to slow its spread 1 – 4 . During the initial phase of the outbreak, dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2020-12, Vol.26 (12), p.1829-1834
Hauptverfasser: Rader, Benjamin, Scarpino, Samuel V., Nande, Anjalika, Hill, Alison L., Adlam, Ben, Reiner, Robert C., Pigott, David M., Gutierrez, Bernardo, Zarebski, Alexander E., Shrestha, Munik, Brownstein, John S., Castro, Marcia C., Dye, Christopher, Tian, Huaiyu, Pybus, Oliver G., Kraemer, Moritz U. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The coronavirus disease 2019 (COVID-19) pandemic is straining public health systems worldwide, and major non-pharmaceutical interventions have been implemented to slow its spread 1 – 4 . During the initial phase of the outbreak, dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was primarily determined by human mobility from Wuhan, China 5 , 6 . Yet empirical evidence on the effect of key geographic factors on local epidemic transmission is lacking 7 . In this study, we analyzed highly resolved spatial variables in cities, together with case count data, to investigate the role of climate, urbanization and variation in interventions. We show that the degree to which cases of COVID-19 are compressed into a short period of time (peakedness of the epidemic) is strongly shaped by population aggregation and heterogeneity, such that epidemics in crowded cities are more spread over time, and crowded cities have larger total attack rates than less populated cities. Observed differences in the peakedness of epidemics are consistent with a meta-population model of COVID-19 that explicitly accounts for spatial hierarchies. We paired our estimates with globally comprehensive data on human mobility and predict that crowded cities worldwide could experience more prolonged epidemics. Analysis of spatial heterogeneity of crowding in China and Italy, together with COVID-19 case data, show that cities with higher crowding have longer epidemics and higher attack rates after the first epidemic wave.
ISSN:1078-8956
1546-170X
DOI:10.1038/s41591-020-1104-0