A Binocular MSCKF-Based Visual Inertial Odometry System Using LK Optical Flow

The odometry is an important part of intelligent mobile robots to achieve positioning and navigation functions. At present, the mainstream visual odometry locates only through the visual information obtained by camera sensors. Therefore, in the case of insufficient light, texture missing and camera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2020-12, Vol.100 (3-4), p.1179-1194
Hauptverfasser: Li, Guangqiang, Yu, Lei, Fei, Shumin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The odometry is an important part of intelligent mobile robots to achieve positioning and navigation functions. At present, the mainstream visual odometry locates only through the visual information obtained by camera sensors. Therefore, in the case of insufficient light, texture missing and camera jitter, the visual odometry is difficult to locate accurately. To solve the problem, we propose a binocular MSCKF-based visual inertial odometry system using Lucas-Kanade (LK) optical flow. Firstly, the Inertial Measurement Unit (IMU) is introduced to overcome the above problems. Moreover, LK optical flow algorithm is utilized to process the visual information obtained by the binocular camera, and MSCKF algorithm is employed to realize the fusion of visual information and inertial information, which improves the accuracy and efficiency of the visual inertial odometry system positioning. Finally, the proposed method is simulated on the European Robotics Challenge (EuRoc) dataset by Robot Operating System (ROS), and compared with two other advanced visual inertial odometry systems, ROVIO and MSCKF-mono. A large number of simulations verify that the proposed method can achieve accurate pose estimation, which is superior to the two existing advanced visual inertial odometry systems.
ISSN:0921-0296
1573-0409
DOI:10.1007/s10846-020-01222-z