Synthesis and properties of poly(ethylene terephthalate) modified with a small amount of 1,10-decanediamine and hydrogen bonds

Linear 1,10-decanediamine was chosen as a modified monomer to prepare modified poly(ethylene terephthalate) (PET) with a low content of amide bonds through two different synthetic methods. To evaluate the effect of amide bonds on the properties of poly(ester amide) analogs (PETAs), the performance o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-03, Vol.56 (7), p.4922-4939
Hauptverfasser: Gao, Hongwei, Liu, Huihui, He, Jinmei, Bai, Yongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linear 1,10-decanediamine was chosen as a modified monomer to prepare modified poly(ethylene terephthalate) (PET) with a low content of amide bonds through two different synthetic methods. To evaluate the effect of amide bonds on the properties of poly(ester amide) analogs (PETAs), the performance of this new type of PET was compared with 1,10-decanediol-modified PET as a control group. The formation of hydrogen bonds in the PETAs was confirmed, and the stability of hydrogen-bonding interactions based on the low content of amide bonds at high temperature was discussed. Interestingly, physical cross-linking networks formed by hydrogen-bonding interactions improved the thermal stability, rheology, and mechanical properties of the PETAs. The crystallization properties were studied in depth by a series of tests, the results of which illustrated that the low content of amide bonds acted as a critical crystallization accelerator in the PETAs. A feasible strategy to prepare high-performance PET, which may be used as a packaging material, was introduced in this work. Graphical abstract
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-020-05590-7