Mechanochemical synthesis of an elusive fluorinated polyacetylene
Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, e...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-01, Vol.13 (1), p.41-46 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Nature chemistry |
container_volume | 13 |
creator | Boswell, Benjamin R. Mansson, Carl M. F. Cox, Jordan M. Jin, Zexin Romaniuk, Joseph A. H. Lindquist, Kurt P. Cegelski, Lynette Xia, Yan Lopez, Steven A. Burns, Noah Z. |
description | Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, especially products inaccessible by other means. Here we utilize polymer mechanochemistry to synthesize a fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. We construct the monomer in four chemical steps on gram scale, which involves a rapid incorporation of fluorine atoms in an exotic photochemical cascade whose mechanism and exquisite stereoselectivity were informed by computation. After polymerization, force activation by ultrasonication produces a gold-coloured, semiconducting fluoropolymer. This work demonstrates that polymer mechanochemistry is a valuable synthetic tool for accessing materials on a preparative scale.
Fluorinated polyacetylene has typically proven to be inaccessible using traditional polymer synthesis, but there is much interest in its predicted properties. Now, a mechanochemical unzipping strategy has succeeded in the synthesis of a gold-coloured, semiconducting fluorinated polyacetylene with improved stability in air compared to polyacetylene. |
doi_str_mv | 10.1038/s41557-020-00608-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473193001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473193001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-204e4f3e1d5e1b949034ed0718f305ec5ce64526cb23e95917c0168832814aea3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8Bydzewmm2MpfkHFi56X7WZiU9Kk7iZC_r2rqfXmaQbmed-Bh7FLDjccUN16waXMYkggBkhBxeqITXkmZSxQ5MeHHWHCzrzfBEgiT0_ZBDEAaZ5O2fyZ7No0rV3TtrKmjvzQdGvylY_aMjJNRHXvq0-KyrpvXdWYjopo19aDsdQNNTV0zk5KU3u62M8Ze7u_e108xsuXh6fFfBlbkakuTkCQKJF4IYmvcpEDCiog46pEkGSlpVTIJLWrBCmXOc8s8FQpTBQXhgzO2PXYu3PtR0--05u2d014qRORIc8RgAcqGSnrWu8dlXrnqq1xg-agv63p0ZoO1vSPNa1C6Gpf3a-2VBwiv5oCgCPgw6l5J_f3-5_aLzm2dxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473193001</pqid></control><display><type>article</type><title>Mechanochemical synthesis of an elusive fluorinated polyacetylene</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Boswell, Benjamin R. ; Mansson, Carl M. F. ; Cox, Jordan M. ; Jin, Zexin ; Romaniuk, Joseph A. H. ; Lindquist, Kurt P. ; Cegelski, Lynette ; Xia, Yan ; Lopez, Steven A. ; Burns, Noah Z.</creator><creatorcontrib>Boswell, Benjamin R. ; Mansson, Carl M. F. ; Cox, Jordan M. ; Jin, Zexin ; Romaniuk, Joseph A. H. ; Lindquist, Kurt P. ; Cegelski, Lynette ; Xia, Yan ; Lopez, Steven A. ; Burns, Noah Z.</creatorcontrib><description>Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, especially products inaccessible by other means. Here we utilize polymer mechanochemistry to synthesize a fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. We construct the monomer in four chemical steps on gram scale, which involves a rapid incorporation of fluorine atoms in an exotic photochemical cascade whose mechanism and exquisite stereoselectivity were informed by computation. After polymerization, force activation by ultrasonication produces a gold-coloured, semiconducting fluoropolymer. This work demonstrates that polymer mechanochemistry is a valuable synthetic tool for accessing materials on a preparative scale.
Fluorinated polyacetylene has typically proven to be inaccessible using traditional polymer synthesis, but there is much interest in its predicted properties. Now, a mechanochemical unzipping strategy has succeeded in the synthesis of a gold-coloured, semiconducting fluorinated polyacetylene with improved stability in air compared to polyacetylene.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00608-8</identifier><identifier>PMID: 33349696</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298/917 ; 639/638/403/933 ; 639/638/455/941 ; 639/638/455/954 ; 639/638/455/958 ; Analytical Chemistry ; Biochemistry ; Chemical bonds ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Fluorination ; Fluorine ; Fluoropolymers ; Gold ; Inorganic Chemistry ; Organic Chemistry ; Photochemicals ; Physical Chemistry ; Polyacetylene ; Polymers ; Stereoselectivity</subject><ispartof>Nature chemistry, 2021-01, Vol.13 (1), p.41-46</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-204e4f3e1d5e1b949034ed0718f305ec5ce64526cb23e95917c0168832814aea3</citedby><cites>FETCH-LOGICAL-c478t-204e4f3e1d5e1b949034ed0718f305ec5ce64526cb23e95917c0168832814aea3</cites><orcidid>0000-0002-8418-3638 ; 0000-0002-0978-1814 ; 0000-0002-4971-3656 ; 0000-0002-5298-748X ; 0000-0003-1064-4507 ; 0000-0002-2107-2455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-020-00608-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-020-00608-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33349696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boswell, Benjamin R.</creatorcontrib><creatorcontrib>Mansson, Carl M. F.</creatorcontrib><creatorcontrib>Cox, Jordan M.</creatorcontrib><creatorcontrib>Jin, Zexin</creatorcontrib><creatorcontrib>Romaniuk, Joseph A. H.</creatorcontrib><creatorcontrib>Lindquist, Kurt P.</creatorcontrib><creatorcontrib>Cegelski, Lynette</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Lopez, Steven A.</creatorcontrib><creatorcontrib>Burns, Noah Z.</creatorcontrib><title>Mechanochemical synthesis of an elusive fluorinated polyacetylene</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, especially products inaccessible by other means. Here we utilize polymer mechanochemistry to synthesize a fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. We construct the monomer in four chemical steps on gram scale, which involves a rapid incorporation of fluorine atoms in an exotic photochemical cascade whose mechanism and exquisite stereoselectivity were informed by computation. After polymerization, force activation by ultrasonication produces a gold-coloured, semiconducting fluoropolymer. This work demonstrates that polymer mechanochemistry is a valuable synthetic tool for accessing materials on a preparative scale.
Fluorinated polyacetylene has typically proven to be inaccessible using traditional polymer synthesis, but there is much interest in its predicted properties. Now, a mechanochemical unzipping strategy has succeeded in the synthesis of a gold-coloured, semiconducting fluorinated polyacetylene with improved stability in air compared to polyacetylene.</description><subject>639/638/298/917</subject><subject>639/638/403/933</subject><subject>639/638/455/941</subject><subject>639/638/455/954</subject><subject>639/638/455/958</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Chemical bonds</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>Fluoropolymers</subject><subject>Gold</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Photochemicals</subject><subject>Physical Chemistry</subject><subject>Polyacetylene</subject><subject>Polymers</subject><subject>Stereoselectivity</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8Bydzewmm2MpfkHFi56X7WZiU9Kk7iZC_r2rqfXmaQbmed-Bh7FLDjccUN16waXMYkggBkhBxeqITXkmZSxQ5MeHHWHCzrzfBEgiT0_ZBDEAaZ5O2fyZ7No0rV3TtrKmjvzQdGvylY_aMjJNRHXvq0-KyrpvXdWYjopo19aDsdQNNTV0zk5KU3u62M8Ze7u_e108xsuXh6fFfBlbkakuTkCQKJF4IYmvcpEDCiog46pEkGSlpVTIJLWrBCmXOc8s8FQpTBQXhgzO2PXYu3PtR0--05u2d014qRORIc8RgAcqGSnrWu8dlXrnqq1xg-agv63p0ZoO1vSPNa1C6Gpf3a-2VBwiv5oCgCPgw6l5J_f3-5_aLzm2dxc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Boswell, Benjamin R.</creator><creator>Mansson, Carl M. F.</creator><creator>Cox, Jordan M.</creator><creator>Jin, Zexin</creator><creator>Romaniuk, Joseph A. H.</creator><creator>Lindquist, Kurt P.</creator><creator>Cegelski, Lynette</creator><creator>Xia, Yan</creator><creator>Lopez, Steven A.</creator><creator>Burns, Noah Z.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8418-3638</orcidid><orcidid>https://orcid.org/0000-0002-0978-1814</orcidid><orcidid>https://orcid.org/0000-0002-4971-3656</orcidid><orcidid>https://orcid.org/0000-0002-5298-748X</orcidid><orcidid>https://orcid.org/0000-0003-1064-4507</orcidid><orcidid>https://orcid.org/0000-0002-2107-2455</orcidid></search><sort><creationdate>20210101</creationdate><title>Mechanochemical synthesis of an elusive fluorinated polyacetylene</title><author>Boswell, Benjamin R. ; Mansson, Carl M. F. ; Cox, Jordan M. ; Jin, Zexin ; Romaniuk, Joseph A. H. ; Lindquist, Kurt P. ; Cegelski, Lynette ; Xia, Yan ; Lopez, Steven A. ; Burns, Noah Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-204e4f3e1d5e1b949034ed0718f305ec5ce64526cb23e95917c0168832814aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/298/917</topic><topic>639/638/403/933</topic><topic>639/638/455/941</topic><topic>639/638/455/954</topic><topic>639/638/455/958</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Chemical bonds</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>Fluoropolymers</topic><topic>Gold</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Photochemicals</topic><topic>Physical Chemistry</topic><topic>Polyacetylene</topic><topic>Polymers</topic><topic>Stereoselectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boswell, Benjamin R.</creatorcontrib><creatorcontrib>Mansson, Carl M. F.</creatorcontrib><creatorcontrib>Cox, Jordan M.</creatorcontrib><creatorcontrib>Jin, Zexin</creatorcontrib><creatorcontrib>Romaniuk, Joseph A. H.</creatorcontrib><creatorcontrib>Lindquist, Kurt P.</creatorcontrib><creatorcontrib>Cegelski, Lynette</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Lopez, Steven A.</creatorcontrib><creatorcontrib>Burns, Noah Z.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boswell, Benjamin R.</au><au>Mansson, Carl M. F.</au><au>Cox, Jordan M.</au><au>Jin, Zexin</au><au>Romaniuk, Joseph A. H.</au><au>Lindquist, Kurt P.</au><au>Cegelski, Lynette</au><au>Xia, Yan</au><au>Lopez, Steven A.</au><au>Burns, Noah Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanochemical synthesis of an elusive fluorinated polyacetylene</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, especially products inaccessible by other means. Here we utilize polymer mechanochemistry to synthesize a fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. We construct the monomer in four chemical steps on gram scale, which involves a rapid incorporation of fluorine atoms in an exotic photochemical cascade whose mechanism and exquisite stereoselectivity were informed by computation. After polymerization, force activation by ultrasonication produces a gold-coloured, semiconducting fluoropolymer. This work demonstrates that polymer mechanochemistry is a valuable synthetic tool for accessing materials on a preparative scale.
Fluorinated polyacetylene has typically proven to be inaccessible using traditional polymer synthesis, but there is much interest in its predicted properties. Now, a mechanochemical unzipping strategy has succeeded in the synthesis of a gold-coloured, semiconducting fluorinated polyacetylene with improved stability in air compared to polyacetylene.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33349696</pmid><doi>10.1038/s41557-020-00608-8</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8418-3638</orcidid><orcidid>https://orcid.org/0000-0002-0978-1814</orcidid><orcidid>https://orcid.org/0000-0002-4971-3656</orcidid><orcidid>https://orcid.org/0000-0002-5298-748X</orcidid><orcidid>https://orcid.org/0000-0003-1064-4507</orcidid><orcidid>https://orcid.org/0000-0002-2107-2455</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2021-01, Vol.13 (1), p.41-46 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_journals_2473193001 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/638/298/917 639/638/403/933 639/638/455/941 639/638/455/954 639/638/455/958 Analytical Chemistry Biochemistry Chemical bonds Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Fluorination Fluorine Fluoropolymers Gold Inorganic Chemistry Organic Chemistry Photochemicals Physical Chemistry Polyacetylene Polymers Stereoselectivity |
title | Mechanochemical synthesis of an elusive fluorinated polyacetylene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanochemical%20synthesis%20of%20an%20elusive%20fluorinated%20polyacetylene&rft.jtitle=Nature%20chemistry&rft.au=Boswell,%20Benjamin%20R.&rft.date=2021-01-01&rft.volume=13&rft.issue=1&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00608-8&rft_dat=%3Cproquest_cross%3E2473193001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473193001&rft_id=info:pmid/33349696&rfr_iscdi=true |