Mechanochemical synthesis of an elusive fluorinated polyacetylene
Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, e...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-01, Vol.13 (1), p.41-46 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, especially products inaccessible by other means. Here we utilize polymer mechanochemistry to synthesize a fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. We construct the monomer in four chemical steps on gram scale, which involves a rapid incorporation of fluorine atoms in an exotic photochemical cascade whose mechanism and exquisite stereoselectivity were informed by computation. After polymerization, force activation by ultrasonication produces a gold-coloured, semiconducting fluoropolymer. This work demonstrates that polymer mechanochemistry is a valuable synthetic tool for accessing materials on a preparative scale.
Fluorinated polyacetylene has typically proven to be inaccessible using traditional polymer synthesis, but there is much interest in its predicted properties. Now, a mechanochemical unzipping strategy has succeeded in the synthesis of a gold-coloured, semiconducting fluorinated polyacetylene with improved stability in air compared to polyacetylene. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/s41557-020-00608-8 |