Integrable symplectic maps associated with discrete Korteweg‐de Vries‐type equations

In this paper, we present novel integrable symplectic maps, associated with ordinary difference equations, and show how they determine, in a remarkably diverse manner, the integrability, including Lax pairs and the explicit solutions, for integrable partial difference equations which are the discret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2021-01, Vol.146 (1), p.233-278
Hauptverfasser: Xu, Xiaoxue, Jiang, Mengmeng, Nijhoff, Frank W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present novel integrable symplectic maps, associated with ordinary difference equations, and show how they determine, in a remarkably diverse manner, the integrability, including Lax pairs and the explicit solutions, for integrable partial difference equations which are the discrete counterparts of integrable partial differential equations of Korteweg‐de Vries‐type (KdV‐type). As a consequence it is demonstrated that several distinct Hamiltonian systems lead to one and the same difference equation by means of the Liouville integrability framework. Thus, these integrable symplectic maps may provide an efficient tool for characterizing, and determining the integrability of, partial difference equations.
ISSN:0022-2526
1467-9590
DOI:10.1111/sapm.12346