Enhanced Wind Generation Forecast Using Robust Ensemble Learning

This letter proposes a robust ensemble learning scheme to enhance short-term prediction of wind power generation. The ensemble problem associated with pruning and combination is formulated as a worst-case robust approximation problem, taking forecast uncertainty in individual predictors into conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2021-01, Vol.12 (1), p.912-915
Hauptverfasser: Su, Heng-Yi, Huang, Chun-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes a robust ensemble learning scheme to enhance short-term prediction of wind power generation. The ensemble problem associated with pruning and combination is formulated as a worst-case robust approximation problem, taking forecast uncertainty in individual predictors into consideration. This problem is then transformed into the scaled form of the augmented Lagrangian and is solved via the alternating direction method of multipliers (ADMM). The proposed scheme can be applied to both deterministic and probabilistic forecasting. A comprehensive study is carried out to illustrate the advantage of the proposed scheme in both point and interval forecasting.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2020.3021578