A New Approach to the Berlekamp-Massey-Sakata Algorithm: Improving Locator Decoding
We study the problem of the computation of Groebner basis for the ideal of linear recurring relations of a doubly periodic array. We find a set of indexes such that, along with some conditions, guarantees that the set of polynomials obtained at the last iteration in the Berlekamp-Massey-Sakata algor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-01, Vol.67 (1), p.268-281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problem of the computation of Groebner basis for the ideal of linear recurring relations of a doubly periodic array. We find a set of indexes such that, along with some conditions, guarantees that the set of polynomials obtained at the last iteration in the Berlekamp-Massey-Sakata algorithm is exactly a Groebner basis for the mentioned ideal. Then, we apply these results to improve locator decoding in abelian codes. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2020.3027751 |