Information measures through velocity time series in a seepage affected alluvial sinuous channel
Alluvial channels with sinuosity follow an altered flow behavior, contradictory to straight flows. At the interface of surface water and groundwater, seepage is a significant phenomenon occurring at the boundary of alluvial channels. The study of turbulence in seepage affected sinuous alluvial chann...
Gespeichert in:
Veröffentlicht in: | Stochastic environmental research and risk assessment 2020-11, Vol.34 (11), p.1925-1938 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alluvial channels with sinuosity follow an altered flow behavior, contradictory to straight flows. At the interface of surface water and groundwater, seepage is a significant phenomenon occurring at the boundary of alluvial channels. The study of turbulence in seepage affected sinuous alluvial channels would thus provide us with a better insight into their hydro-morphological behavior. To address the nature of turbulence in sinuous channel with downward seepage an experimental framework was design. The paper reports the structure of turbulence in the sinuous channel for no seepage and seepage flow. With downward seepage, there is a noticeable shift of Reynolds shear stress at near-bed, which reports more momentum transport. The average streamwise and transverse turbulence intensity increased by 3.8–18.5% and 4–10.6%, respectively with downward seepage. Calculation of Kolmogorov complexity and the Kolmogorov complexity spectrum suggests higher randomness in the outer region, which can be associated with excess momentum transport. In the lower flow depth
z
/
h
=
0.2
, the randomness in the transverse velocities is higher in the outer region of the bend for about 25% and 38% compared to the central and inner region of the bend, respectively. With downward seepage, randomness increased especially in the outer region. This increase in randomness may report the erosive action in the outer part of the bend. Permutation entropy provided an informative measure to study the complex behavior of the transverse velocity time-series, which we found to be higher in the outer flow zone. For downward seepage, mean of entropy increased across the bend. The turbulent flow alterations and increase in randomness with seepage may be helpful to understand the flow in seepage affected sinuous alluvial channels. |
---|---|
ISSN: | 1436-3240 1436-3259 |
DOI: | 10.1007/s00477-020-01849-2 |