The Inductive Graph Dimension from The Minimum Edge Clique Cover
In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: \(\mathrm{dim}\, (G_1+ G_2) = 1 +\mathrm{dim}\, G_1+ \mathrm{dim}...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Betre, Kassahun Salinger, Evatt |
description | In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: \(\mathrm{dim}\, (G_1+ G_2) = 1 +\mathrm{dim}\, G_1+ \mathrm{dim}\, G_2\). We use this formula to derive an expression for the inductive dimension of an arbitrary finite simple graph from its minimum edge clique cover. A corollary of the formula is that any arbitrary finite simple graph whose maximal cliques are all of order \(N\) has dimension \(N-1\). We finish by finding lower and upper bounds on the inductive dimension of a simple graph in terms of its clique number. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2471580856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471580856</sourcerecordid><originalsourceid>FETCH-proquest_journals_24715808563</originalsourceid><addsrcrecordid>eNqNyk0LgjAcgPERBEn5Hf7QWZib0x0Ds5dDN-8iOXPiNtucn78FfYBOz-H5bVBEKE0TnhGyQ7FzI8aY5AVhjEboVA8C7rrzz0WuAq62nQc4SyW0k0ZDb42CL3lILZVXUHUvAeUk3z7ErMIe0LZvJyfiX_foeKnq8pbM1gTklmY03uqwGpIVKeOYs5z-pz7KZDgt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471580856</pqid></control><display><type>article</type><title>The Inductive Graph Dimension from The Minimum Edge Clique Cover</title><source>Free E- Journals</source><creator>Betre, Kassahun ; Salinger, Evatt</creator><creatorcontrib>Betre, Kassahun ; Salinger, Evatt</creatorcontrib><description>In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: \(\mathrm{dim}\, (G_1+ G_2) = 1 +\mathrm{dim}\, G_1+ \mathrm{dim}\, G_2\). We use this formula to derive an expression for the inductive dimension of an arbitrary finite simple graph from its minimum edge clique cover. A corollary of the formula is that any arbitrary finite simple graph whose maximal cliques are all of order \(N\) has dimension \(N-1\). We finish by finding lower and upper bounds on the inductive dimension of a simple graph in terms of its clique number.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphs ; Upper bounds</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Betre, Kassahun</creatorcontrib><creatorcontrib>Salinger, Evatt</creatorcontrib><title>The Inductive Graph Dimension from The Minimum Edge Clique Cover</title><title>arXiv.org</title><description>In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: \(\mathrm{dim}\, (G_1+ G_2) = 1 +\mathrm{dim}\, G_1+ \mathrm{dim}\, G_2\). We use this formula to derive an expression for the inductive dimension of an arbitrary finite simple graph from its minimum edge clique cover. A corollary of the formula is that any arbitrary finite simple graph whose maximal cliques are all of order \(N\) has dimension \(N-1\). We finish by finding lower and upper bounds on the inductive dimension of a simple graph in terms of its clique number.</description><subject>Graphs</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0LgjAcgPERBEn5Hf7QWZib0x0Ds5dDN-8iOXPiNtucn78FfYBOz-H5bVBEKE0TnhGyQ7FzI8aY5AVhjEboVA8C7rrzz0WuAq62nQc4SyW0k0ZDb42CL3lILZVXUHUvAeUk3z7ErMIe0LZvJyfiX_foeKnq8pbM1gTklmY03uqwGpIVKeOYs5z-pz7KZDgt</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>Betre, Kassahun</creator><creator>Salinger, Evatt</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201218</creationdate><title>The Inductive Graph Dimension from The Minimum Edge Clique Cover</title><author>Betre, Kassahun ; Salinger, Evatt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24715808563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Graphs</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Betre, Kassahun</creatorcontrib><creatorcontrib>Salinger, Evatt</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betre, Kassahun</au><au>Salinger, Evatt</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Inductive Graph Dimension from The Minimum Edge Clique Cover</atitle><jtitle>arXiv.org</jtitle><date>2020-12-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: \(\mathrm{dim}\, (G_1+ G_2) = 1 +\mathrm{dim}\, G_1+ \mathrm{dim}\, G_2\). We use this formula to derive an expression for the inductive dimension of an arbitrary finite simple graph from its minimum edge clique cover. A corollary of the formula is that any arbitrary finite simple graph whose maximal cliques are all of order \(N\) has dimension \(N-1\). We finish by finding lower and upper bounds on the inductive dimension of a simple graph in terms of its clique number.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2471580856 |
source | Free E- Journals |
subjects | Graphs Upper bounds |
title | The Inductive Graph Dimension from The Minimum Edge Clique Cover |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Inductive%20Graph%20Dimension%20from%20The%20Minimum%20Edge%20Clique%20Cover&rft.jtitle=arXiv.org&rft.au=Betre,%20Kassahun&rft.date=2020-12-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2471580856%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471580856&rft_id=info:pmid/&rfr_iscdi=true |