The Inductive Graph Dimension from The Minimum Edge Clique Cover

In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: \(\mathrm{dim}\, (G_1+ G_2) = 1 +\mathrm{dim}\, G_1+ \mathrm{dim}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-12
Hauptverfasser: Betre, Kassahun, Salinger, Evatt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: \(\mathrm{dim}\, (G_1+ G_2) = 1 +\mathrm{dim}\, G_1+ \mathrm{dim}\, G_2\). We use this formula to derive an expression for the inductive dimension of an arbitrary finite simple graph from its minimum edge clique cover. A corollary of the formula is that any arbitrary finite simple graph whose maximal cliques are all of order \(N\) has dimension \(N-1\). We finish by finding lower and upper bounds on the inductive dimension of a simple graph in terms of its clique number.
ISSN:2331-8422