Application of computer simulation results and machine learning in analysis of microwave radiothermometry data

This work was done with the aim of developing the fundamental breast cancer early differential diagnosis foundations based on modeling the space-time temperature distribution using the microwave radiothermometry method and obtained data intelligent analysis. The article deals with the machine learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-12
Hauptverfasser: Polyakov, Maxim, Popov, Illarion, Losev, Alexander, Khoperskov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work was done with the aim of developing the fundamental breast cancer early differential diagnosis foundations based on modeling the space-time temperature distribution using the microwave radiothermometry method and obtained data intelligent analysis. The article deals with the machine learning application in the microwave radiothermometry data analysis. The problems associated with the construction mammary glands temperature fields computer models for patients with various diagnostics classes, are also discussed. With the help of a computer experiment, based on the machine learning algorithms set (logistic regression, naive Bayesian classifier, support vector machine, decision tree, gradient boosting, K-nearest neighbors, etc.) usage, the mammary glands temperature fields computer models set adequacy.
ISSN:2331-8422