A small natural molecule CADPE kills residual colorectal cancer cells by inhibiting key transcription factors and translation initiation factors
Residual disease is the major cause for colorectal cancer (CRC) relapse. Herein, we explore whether and how a natural molecule CADPE killed heterogenic populations in a panel of CRC cell lines with KRAS/BRAF mutations that are natively resistant to EGFR- or VEGFR-targeted therapy, without sparing pe...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2020-11, Vol.11 (11), p.982-982, Article 982 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Residual disease is the major cause for colorectal cancer (CRC) relapse. Herein, we explore whether and how a natural molecule CADPE killed heterogenic populations in a panel of CRC cell lines with KRAS/BRAF mutations that are natively resistant to EGFR- or VEGFR-targeted therapy, without sparing persistent cells, a reservoir of the disease relapse. Results showed that CADPE killed the tumor bulk and residual cells in the panel of CRC cell lines, rapidly inactivated c-Myc, STAT3, and NF-κB, and then decreased the protein levels of key signaling molecules for CRC, such as β-catenin, Notch1, and the nodes of mTOR pathways; eukaryotic translation initiation factors (eIF4F); anti-apoptotic proteins (Bcl-xl, Mcl-1, and survivin); and stemness-supporting molecules (CD133, Bim-1, and VEGF). In terms of mechanism of action, concurrent downregulation of Mcl-1, Bcl-xl, and survivin was necessary for CADPE to kill CRC bulk cells, while additional depletion of CD133 and VEGF proteins was required for killing the residual CRC cells. Moreover, the disabled c-Myc, STAT3, NF-κB, and eIF4F were associated with the broadly decreased levels of anti-apoptosis proteins and pro-stemness proteins. Consistently, CADPE suppressed CRC tumor growth associated with robust apoptosis and depleted levels of c-Myc, STAT3, NF-κB, eIF4F, anti-apoptotic proteins, and pro-stemness proteins. Our findings showed the promise of CADPE for treating CRC and suggested a rational polytherapy that disables c-Myc, STAT3, NF-κB, and eIF4F for killing CRC residual disease. |
---|---|
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/s41419-020-03191-5 |