Tunable strain soliton networks confine electrons in van der Waals materials
Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for g...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-11, Vol.16 (11), p.1097-1102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1102 |
---|---|
container_issue | 11 |
container_start_page | 1097 |
container_title | Nature physics |
container_volume | 16 |
creator | Edelberg, Drew Kumar, Hemant Shenoy, Vivek Ochoa, Héctor Pasupathy, Abhay N. |
description | Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN
1
; rotations between the two lattices, as is the case for twisted bilayer graphene
2
; and strains between two identical layers in a bilayer
3
. Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN
1
, collective electronic phases in twisted bilayers and twisted double bilayers
4
–
8
, and trapping of excitons in the moiré potential
9
–
12
. An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials.
By sliding one layer with respect to the other in a van der Waals heterostructure, Edelberg et al. create a honeycomb network of solitons. Vertices of the network trap electrons, allowing strain-tunable control of confined states. |
doi_str_mv | 10.1038/s41567-020-0953-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471550434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471550434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-75936469f782c0768e7ae5b4191d93b39e80481308c39cee704e3a2b4fcd8fdd3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82r-7SY5SlErFLxUPIZsdla2bpOapIrf3pQVPXmad_i9NzMPoUtKrinh6iYJWjeyIoxURNe8YkdoRqWoKyYUPf7Vkp-is5Q2hAjWUD5Dq_Xe23YEnHK0g8cpjEMOHnvInyG-JeyC7wcPGEZwOQafcKE-rMcdRPxi7Zjw1maIQ1Hn6KQvAy5-5hw939-tF8tq9fTwuLhdVY7TJley1rwRje6lYo7IRoG0ULeCatpp3nINipSrOVGOawcgiQBuWSt616m-6_gcXU25uxje95Cy2YR99GWlKS_SuiaCi0LRiXIxpBShN7s4bG38MpSYQ2lmKs2U0syhNMOKh02eVFj_CvEv-X_TN_nzbvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471550434</pqid></control><display><type>article</type><title>Tunable strain soliton networks confine electrons in van der Waals materials</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Edelberg, Drew ; Kumar, Hemant ; Shenoy, Vivek ; Ochoa, Héctor ; Pasupathy, Abhay N.</creator><creatorcontrib>Edelberg, Drew ; Kumar, Hemant ; Shenoy, Vivek ; Ochoa, Héctor ; Pasupathy, Abhay N.</creatorcontrib><description>Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN
1
; rotations between the two lattices, as is the case for twisted bilayer graphene
2
; and strains between two identical layers in a bilayer
3
. Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN
1
, collective electronic phases in twisted bilayers and twisted double bilayers
4
–
8
, and trapping of excitons in the moiré potential
9
–
12
. An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials.
By sliding one layer with respect to the other in a van der Waals heterostructure, Edelberg et al. create a honeycomb network of solitons. Vertices of the network trap electrons, allowing strain-tunable control of confined states.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0953-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/995 ; 639/925/357/1018 ; Apexes ; Atomic ; Bilayers ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Crystal defects ; Crystals ; Electrons ; Excitons ; Graphene ; Heterostructures ; Interlayers ; Lattice parameters ; Lattices ; Letter ; Mathematical and Computational Physics ; Molecular ; Networks ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Sliding ; Solitary waves ; Superlattices ; Theoretical ; Transition metal compounds ; Trapping ; Twisting</subject><ispartof>Nature physics, 2020-11, Vol.16 (11), p.1097-1102</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-75936469f782c0768e7ae5b4191d93b39e80481308c39cee704e3a2b4fcd8fdd3</citedby><cites>FETCH-LOGICAL-c316t-75936469f782c0768e7ae5b4191d93b39e80481308c39cee704e3a2b4fcd8fdd3</cites><orcidid>0000-0002-2744-0634 ; 0000-0003-4339-5711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-020-0953-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-020-0953-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Edelberg, Drew</creatorcontrib><creatorcontrib>Kumar, Hemant</creatorcontrib><creatorcontrib>Shenoy, Vivek</creatorcontrib><creatorcontrib>Ochoa, Héctor</creatorcontrib><creatorcontrib>Pasupathy, Abhay N.</creatorcontrib><title>Tunable strain soliton networks confine electrons in van der Waals materials</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN
1
; rotations between the two lattices, as is the case for twisted bilayer graphene
2
; and strains between two identical layers in a bilayer
3
. Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN
1
, collective electronic phases in twisted bilayers and twisted double bilayers
4
–
8
, and trapping of excitons in the moiré potential
9
–
12
. An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials.
By sliding one layer with respect to the other in a van der Waals heterostructure, Edelberg et al. create a honeycomb network of solitons. Vertices of the network trap electrons, allowing strain-tunable control of confined states.</description><subject>639/766/119/995</subject><subject>639/925/357/1018</subject><subject>Apexes</subject><subject>Atomic</subject><subject>Bilayers</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Interlayers</subject><subject>Lattice parameters</subject><subject>Lattices</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Networks</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sliding</subject><subject>Solitary waves</subject><subject>Superlattices</subject><subject>Theoretical</subject><subject>Transition metal compounds</subject><subject>Trapping</subject><subject>Twisting</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82r-7SY5SlErFLxUPIZsdla2bpOapIrf3pQVPXmad_i9NzMPoUtKrinh6iYJWjeyIoxURNe8YkdoRqWoKyYUPf7Vkp-is5Q2hAjWUD5Dq_Xe23YEnHK0g8cpjEMOHnvInyG-JeyC7wcPGEZwOQafcKE-rMcdRPxi7Zjw1maIQ1Hn6KQvAy5-5hw939-tF8tq9fTwuLhdVY7TJley1rwRje6lYo7IRoG0ULeCatpp3nINipSrOVGOawcgiQBuWSt616m-6_gcXU25uxje95Cy2YR99GWlKS_SuiaCi0LRiXIxpBShN7s4bG38MpSYQ2lmKs2U0syhNMOKh02eVFj_CvEv-X_TN_nzbvo</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Edelberg, Drew</creator><creator>Kumar, Hemant</creator><creator>Shenoy, Vivek</creator><creator>Ochoa, Héctor</creator><creator>Pasupathy, Abhay N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2744-0634</orcidid><orcidid>https://orcid.org/0000-0003-4339-5711</orcidid></search><sort><creationdate>20201101</creationdate><title>Tunable strain soliton networks confine electrons in van der Waals materials</title><author>Edelberg, Drew ; Kumar, Hemant ; Shenoy, Vivek ; Ochoa, Héctor ; Pasupathy, Abhay N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-75936469f782c0768e7ae5b4191d93b39e80481308c39cee704e3a2b4fcd8fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/995</topic><topic>639/925/357/1018</topic><topic>Apexes</topic><topic>Atomic</topic><topic>Bilayers</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Interlayers</topic><topic>Lattice parameters</topic><topic>Lattices</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Networks</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sliding</topic><topic>Solitary waves</topic><topic>Superlattices</topic><topic>Theoretical</topic><topic>Transition metal compounds</topic><topic>Trapping</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edelberg, Drew</creatorcontrib><creatorcontrib>Kumar, Hemant</creatorcontrib><creatorcontrib>Shenoy, Vivek</creatorcontrib><creatorcontrib>Ochoa, Héctor</creatorcontrib><creatorcontrib>Pasupathy, Abhay N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edelberg, Drew</au><au>Kumar, Hemant</au><au>Shenoy, Vivek</au><au>Ochoa, Héctor</au><au>Pasupathy, Abhay N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable strain soliton networks confine electrons in van der Waals materials</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>16</volume><issue>11</issue><spage>1097</spage><epage>1102</epage><pages>1097-1102</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN
1
; rotations between the two lattices, as is the case for twisted bilayer graphene
2
; and strains between two identical layers in a bilayer
3
. Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN
1
, collective electronic phases in twisted bilayers and twisted double bilayers
4
–
8
, and trapping of excitons in the moiré potential
9
–
12
. An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials.
By sliding one layer with respect to the other in a van der Waals heterostructure, Edelberg et al. create a honeycomb network of solitons. Vertices of the network trap electrons, allowing strain-tunable control of confined states.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0953-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2744-0634</orcidid><orcidid>https://orcid.org/0000-0003-4339-5711</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-11, Vol.16 (11), p.1097-1102 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2471550434 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119/995 639/925/357/1018 Apexes Atomic Bilayers Classical and Continuum Physics Complex Systems Condensed Matter Physics Crystal defects Crystals Electrons Excitons Graphene Heterostructures Interlayers Lattice parameters Lattices Letter Mathematical and Computational Physics Molecular Networks Optical and Plasma Physics Physics Physics and Astronomy Sliding Solitary waves Superlattices Theoretical Transition metal compounds Trapping Twisting |
title | Tunable strain soliton networks confine electrons in van der Waals materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20strain%20soliton%20networks%20confine%20electrons%20in%20van%20der%20Waals%20materials&rft.jtitle=Nature%20physics&rft.au=Edelberg,%20Drew&rft.date=2020-11-01&rft.volume=16&rft.issue=11&rft.spage=1097&rft.epage=1102&rft.pages=1097-1102&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0953-2&rft_dat=%3Cproquest_cross%3E2471550434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471550434&rft_id=info:pmid/&rfr_iscdi=true |