Tunable strain soliton networks confine electrons in van der Waals materials

Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-11, Vol.16 (11), p.1097-1102
Hauptverfasser: Edelberg, Drew, Kumar, Hemant, Shenoy, Vivek, Ochoa, Héctor, Pasupathy, Abhay N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1102
container_issue 11
container_start_page 1097
container_title Nature physics
container_volume 16
creator Edelberg, Drew
Kumar, Hemant
Shenoy, Vivek
Ochoa, Héctor
Pasupathy, Abhay N.
description Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN 1 ; rotations between the two lattices, as is the case for twisted bilayer graphene 2 ; and strains between two identical layers in a bilayer 3 . Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN 1 , collective electronic phases in twisted bilayers and twisted double bilayers 4 – 8 , and trapping of excitons in the moiré potential 9 – 12 . An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials. By sliding one layer with respect to the other in a van der Waals heterostructure, Edelberg et al. create a honeycomb network of solitons. Vertices of the network trap electrons, allowing strain-tunable control of confined states.
doi_str_mv 10.1038/s41567-020-0953-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471550434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471550434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-75936469f782c0768e7ae5b4191d93b39e80481308c39cee704e3a2b4fcd8fdd3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82r-7SY5SlErFLxUPIZsdla2bpOapIrf3pQVPXmad_i9NzMPoUtKrinh6iYJWjeyIoxURNe8YkdoRqWoKyYUPf7Vkp-is5Q2hAjWUD5Dq_Xe23YEnHK0g8cpjEMOHnvInyG-JeyC7wcPGEZwOQafcKE-rMcdRPxi7Zjw1maIQ1Hn6KQvAy5-5hw939-tF8tq9fTwuLhdVY7TJley1rwRje6lYo7IRoG0ULeCatpp3nINipSrOVGOawcgiQBuWSt616m-6_gcXU25uxje95Cy2YR99GWlKS_SuiaCi0LRiXIxpBShN7s4bG38MpSYQ2lmKs2U0syhNMOKh02eVFj_CvEv-X_TN_nzbvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471550434</pqid></control><display><type>article</type><title>Tunable strain soliton networks confine electrons in van der Waals materials</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Edelberg, Drew ; Kumar, Hemant ; Shenoy, Vivek ; Ochoa, Héctor ; Pasupathy, Abhay N.</creator><creatorcontrib>Edelberg, Drew ; Kumar, Hemant ; Shenoy, Vivek ; Ochoa, Héctor ; Pasupathy, Abhay N.</creatorcontrib><description>Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN 1 ; rotations between the two lattices, as is the case for twisted bilayer graphene 2 ; and strains between two identical layers in a bilayer 3 . Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN 1 , collective electronic phases in twisted bilayers and twisted double bilayers 4 – 8 , and trapping of excitons in the moiré potential 9 – 12 . An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials. By sliding one layer with respect to the other in a van der Waals heterostructure, Edelberg et al. create a honeycomb network of solitons. Vertices of the network trap electrons, allowing strain-tunable control of confined states.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0953-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/995 ; 639/925/357/1018 ; Apexes ; Atomic ; Bilayers ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Crystal defects ; Crystals ; Electrons ; Excitons ; Graphene ; Heterostructures ; Interlayers ; Lattice parameters ; Lattices ; Letter ; Mathematical and Computational Physics ; Molecular ; Networks ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Sliding ; Solitary waves ; Superlattices ; Theoretical ; Transition metal compounds ; Trapping ; Twisting</subject><ispartof>Nature physics, 2020-11, Vol.16 (11), p.1097-1102</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-75936469f782c0768e7ae5b4191d93b39e80481308c39cee704e3a2b4fcd8fdd3</citedby><cites>FETCH-LOGICAL-c316t-75936469f782c0768e7ae5b4191d93b39e80481308c39cee704e3a2b4fcd8fdd3</cites><orcidid>0000-0002-2744-0634 ; 0000-0003-4339-5711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-020-0953-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-020-0953-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Edelberg, Drew</creatorcontrib><creatorcontrib>Kumar, Hemant</creatorcontrib><creatorcontrib>Shenoy, Vivek</creatorcontrib><creatorcontrib>Ochoa, Héctor</creatorcontrib><creatorcontrib>Pasupathy, Abhay N.</creatorcontrib><title>Tunable strain soliton networks confine electrons in van der Waals materials</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN 1 ; rotations between the two lattices, as is the case for twisted bilayer graphene 2 ; and strains between two identical layers in a bilayer 3 . Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN 1 , collective electronic phases in twisted bilayers and twisted double bilayers 4 – 8 , and trapping of excitons in the moiré potential 9 – 12 . An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials. By sliding one layer with respect to the other in a van der Waals heterostructure, Edelberg et al. create a honeycomb network of solitons. Vertices of the network trap electrons, allowing strain-tunable control of confined states.</description><subject>639/766/119/995</subject><subject>639/925/357/1018</subject><subject>Apexes</subject><subject>Atomic</subject><subject>Bilayers</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Interlayers</subject><subject>Lattice parameters</subject><subject>Lattices</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Networks</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sliding</subject><subject>Solitary waves</subject><subject>Superlattices</subject><subject>Theoretical</subject><subject>Transition metal compounds</subject><subject>Trapping</subject><subject>Twisting</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82r-7SY5SlErFLxUPIZsdla2bpOapIrf3pQVPXmad_i9NzMPoUtKrinh6iYJWjeyIoxURNe8YkdoRqWoKyYUPf7Vkp-is5Q2hAjWUD5Dq_Xe23YEnHK0g8cpjEMOHnvInyG-JeyC7wcPGEZwOQafcKE-rMcdRPxi7Zjw1maIQ1Hn6KQvAy5-5hw939-tF8tq9fTwuLhdVY7TJley1rwRje6lYo7IRoG0ULeCatpp3nINipSrOVGOawcgiQBuWSt616m-6_gcXU25uxje95Cy2YR99GWlKS_SuiaCi0LRiXIxpBShN7s4bG38MpSYQ2lmKs2U0syhNMOKh02eVFj_CvEv-X_TN_nzbvo</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Edelberg, Drew</creator><creator>Kumar, Hemant</creator><creator>Shenoy, Vivek</creator><creator>Ochoa, Héctor</creator><creator>Pasupathy, Abhay N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2744-0634</orcidid><orcidid>https://orcid.org/0000-0003-4339-5711</orcidid></search><sort><creationdate>20201101</creationdate><title>Tunable strain soliton networks confine electrons in van der Waals materials</title><author>Edelberg, Drew ; Kumar, Hemant ; Shenoy, Vivek ; Ochoa, Héctor ; Pasupathy, Abhay N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-75936469f782c0768e7ae5b4191d93b39e80481308c39cee704e3a2b4fcd8fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119/995</topic><topic>639/925/357/1018</topic><topic>Apexes</topic><topic>Atomic</topic><topic>Bilayers</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Interlayers</topic><topic>Lattice parameters</topic><topic>Lattices</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Networks</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sliding</topic><topic>Solitary waves</topic><topic>Superlattices</topic><topic>Theoretical</topic><topic>Transition metal compounds</topic><topic>Trapping</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edelberg, Drew</creatorcontrib><creatorcontrib>Kumar, Hemant</creatorcontrib><creatorcontrib>Shenoy, Vivek</creatorcontrib><creatorcontrib>Ochoa, Héctor</creatorcontrib><creatorcontrib>Pasupathy, Abhay N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edelberg, Drew</au><au>Kumar, Hemant</au><au>Shenoy, Vivek</au><au>Ochoa, Héctor</au><au>Pasupathy, Abhay N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable strain soliton networks confine electrons in van der Waals materials</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>16</volume><issue>11</issue><spage>1097</spage><epage>1102</epage><pages>1097-1102</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN 1 ; rotations between the two lattices, as is the case for twisted bilayer graphene 2 ; and strains between two identical layers in a bilayer 3 . Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN 1 , collective electronic phases in twisted bilayers and twisted double bilayers 4 – 8 , and trapping of excitons in the moiré potential 9 – 12 . An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials. By sliding one layer with respect to the other in a van der Waals heterostructure, Edelberg et al. create a honeycomb network of solitons. Vertices of the network trap electrons, allowing strain-tunable control of confined states.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0953-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2744-0634</orcidid><orcidid>https://orcid.org/0000-0003-4339-5711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-11, Vol.16 (11), p.1097-1102
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2471550434
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/766/119/995
639/925/357/1018
Apexes
Atomic
Bilayers
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Crystal defects
Crystals
Electrons
Excitons
Graphene
Heterostructures
Interlayers
Lattice parameters
Lattices
Letter
Mathematical and Computational Physics
Molecular
Networks
Optical and Plasma Physics
Physics
Physics and Astronomy
Sliding
Solitary waves
Superlattices
Theoretical
Transition metal compounds
Trapping
Twisting
title Tunable strain soliton networks confine electrons in van der Waals materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20strain%20soliton%20networks%20confine%20electrons%20in%20van%20der%20Waals%20materials&rft.jtitle=Nature%20physics&rft.au=Edelberg,%20Drew&rft.date=2020-11-01&rft.volume=16&rft.issue=11&rft.spage=1097&rft.epage=1102&rft.pages=1097-1102&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0953-2&rft_dat=%3Cproquest_cross%3E2471550434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471550434&rft_id=info:pmid/&rfr_iscdi=true