High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode

Considering their superior charge-transfer characteristics, easy tenability of energy levels, and low production cost, organic semiconductors are ideal for photoelectrochemical (PEC) hydrogen production. However, organic-semiconductor-based photoelectrodes have not been extensively explored for PEC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-11, Vol.11 (1), p.5509-5509, Article 5509
Hauptverfasser: Yu, Je Min, Lee, Jungho, Kim, Yoon Seo, Song, Jaejung, Oh, Jiyeon, Lee, Sang Myeon, Jeong, Mingyu, Kim, Yongseon, Kwak, Ja Hun, Cho, Seungho, Yang, Changduk, Jang, Ji-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considering their superior charge-transfer characteristics, easy tenability of energy levels, and low production cost, organic semiconductors are ideal for photoelectrochemical (PEC) hydrogen production. However, organic-semiconductor-based photoelectrodes have not been extensively explored for PEC water-splitting because of their low stability in water. Herein, we report high-performance and stable organic-semiconductors photoanodes consisting of p -type polymers and n -type non-fullerene materials, which is passivated using nickel foils, GaIn eutectic, and layered double hydroxides as model materials. We achieve a photocurrent density of 15.1 mA cm −2 at 1.23 V vs. reversible hydrogen electrode (RHE) with an onset potential of 0.55 V vs. RHE and a record high half-cell solar-to-hydrogen conversion efficiency of 4.33% under AM 1.5 G solar simulated light. After conducting the stability test at 1.3 V vs. RHE for 10 h, 90% of the initial photocurrent density are retained, whereas the photoactive layer without passivation lost its activity within a few minutes. While organic semiconductors may be useful in photoelectrochemical water-splitting materials, they show low stability in water. Here, the authors report high-performance and stable organic-semiconductor-based photoanodes passivated using nickel foils, GaIn eutectic, and layered double hydroxides.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-19329-0