Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau

The Tibetan Plateau (TP) has recently been polluted by anthropogenic emissions transported from South Asia, but the mechanisms conducive to this aerosol delivery are poorly understood. Here we show that winter loss of Arctic sea ice over the subpolar North Atlantic boosts aerosol transport toward th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature climate change 2020-11, Vol.10 (11), p.1037-1044
Hauptverfasser: Li, Fei, Wan, Xin, Wang, Huijun, Orsolini, Yvan Joseph, Cong, Zhiyuan, Gao, Yongqi, Kang, Shichang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Tibetan Plateau (TP) has recently been polluted by anthropogenic emissions transported from South Asia, but the mechanisms conducive to this aerosol delivery are poorly understood. Here we show that winter loss of Arctic sea ice over the subpolar North Atlantic boosts aerosol transport toward the TP in April, when the aerosol loading is at its climatological maximum and preceding the Indian summer monsoon onset. Low sea ice in February weakens the polar jet, causing decreased Ural snowpack via reduced transport of warm, moist oceanic air into the high-latitude Eurasian interior. This diminished snowpack persists through April, reinforcing the Ural pressure ridge and East Asian trough, segments of a quasi-stationary Rossby wave train extending across Eurasia. These conditions facilitate an enhanced subtropical westerly jet at the southern edge of the TP, invigorating upslope winds that combine with mesoscale updrafts to waft emissions over the Himalayas onto the TP. Aerosol transport from South Asia to the Tibetan Plateau (TP) peaks in the pre-monsoon period, but the controlling dynamics remain unclear. Observational analysis shows that low February Arctic sea ice boosts the Asian subtropical jet in April, which can loft aerosols over the Himalayas onto the TP.
ISSN:1758-678X
1758-6798
DOI:10.1038/s41558-020-0881-2