Techno-economic analysis of distributed absorption cooling system driven by a district heating system

The heating requirements for district heating systems decrease sharply during the summer in China, which leads to the heating capacity of these systems remaining idle. To make full use of district heating systems, a novel approach for application of these thermal systems to cooling is proposed in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy efficiency 2020-12, Vol.13 (8), p.1689-1703
Hauptverfasser: Zhang, Qunli, Wang, Yue, Zhang, Xinchao, Wang, Mingshuang, Wang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The heating requirements for district heating systems decrease sharply during the summer in China, which leads to the heating capacity of these systems remaining idle. To make full use of district heating systems, a novel approach for application of these thermal systems to cooling is proposed in this paper. The proposed system is based on a distributed absorption cooling (DAC) system driven by heat from the combined heat and power system. To investigate its energy-saving effect s, the energy efficiency of the proposed DAC system was researched using the primary energy saving ratio (FESR) method. To assess the economic feasibility of the proposed system, the equivalent heating price for this DAC system was derived using economic analysis methods. The weight analysis method was used to analyse the factors affecting the energy efficiency of the DAC system. The research results showed that the energy efficiency and the economic feasibility of the proposed DAC system can be improved by increasing the heating-driven cooling efficiency. A new DAC system (IDAC) was then proposed based on integration of DAC with a heat-driven liquid desiccant dehumidifier (LDD), and the results show that the new system can increase the heating-driven cooling efficiency.
ISSN:1570-646X
1570-6478
DOI:10.1007/s12053-020-09903-2