Robustness of Rhythmic-Based Dynamic Hand Gesture with Surface Electromyography (sEMG) for Authentication

Authentication has three basic factors—knowledge, ownership, and inherence. Biometrics is considered as the inherence factor and is widely used for authentication due to its conveniences. Biometrics consists of static biometrics (physical characteristics) and dynamic biometrics (behavioral). There i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-12, Vol.9 (12), p.2143
Hauptverfasser: Wong, Alex Ming Hui, Furukawa, Masahiro, Maeda, Taro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Authentication has three basic factors—knowledge, ownership, and inherence. Biometrics is considered as the inherence factor and is widely used for authentication due to its conveniences. Biometrics consists of static biometrics (physical characteristics) and dynamic biometrics (behavioral). There is a trade-off between robustness and security. Static biometrics, such as fingerprint and face recognition, are often reliable as they are known to be more robust, but once stolen, it is difficult to reset. On the other hand, dynamic biometrics are usually considered to be more secure due to the constant changes in behavior but at the cost of robustness. In this paper, we proposed a multi-factor authentication—rhythmic-based dynamic hand gesture, where the rhythmic pattern is the knowledge factor and the gesture behavior is the inherence factor, and we evaluate the robustness of the proposed method. Our proposal can be easily applied with other input methods because rhythmic pattern can be observed, such as during typing. It is also expected to improve the robustness of the gesture behavior as the rhythmic pattern acts as a symbolic cue for the gesture. The results shown that our method is able to authenticate a genuine user at the highest accuracy of 0.9301 ± 0.0280 and, also, when being mimicked by impostors, the false acceptance rate (FAR) is as low as 0.1038 ± 0.0179.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9122143