Capillary Bridges on Liquid Infused Surfaces
We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on non-infused solid surfaces, two-component liquid bridges can exhibit a range of different morph...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on non-infused solid surfaces, two-component liquid bridges can exhibit a range of different morphologies where the liquid droplet is directly in contact with two, one or none of the LIS substrates. In addition, the capillary bridges may lose stability when compressed due to the envelopment of the droplet by the lubricant. We also characterise the capillary force, maximum separation and effective spring force, and find they are influenced by the shape and size of the lubricant ridge. Importantly, these can be tuned to increase the effective capillary adhesion strength by manipulating the lubricant pressure, Neumann angle, and wetting contact angles. As such, LIS are not only "slippery" parallel to the surface, but they are also "sticky" perpendicular to the surface. |
---|---|
ISSN: | 2331-8422 |