Infinite set of non linear Equations for the Li- Keiper Coefficients: a possible new upper and lower bound

Starting with an infinite set of non linear Equations for the Li-Keiper coefficients, we first specify a lower bound emerging from the infinite set and give a characterization of it. Then, we propose a possible new upper and lower bound for the coefficients in few of the partitions occurring in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-12
Hauptverfasser: Merlini Danilo, Sala Massimo, Sala Nicoletta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Starting with an infinite set of non linear Equations for the Li-Keiper coefficients, we first specify a lower bound emerging from the infinite set and give a characterization of it. Then, we propose a possible new upper and lower bound for the coefficients in few of the partitions occurring in the cluster functions furnishing in a nonlinear way the coefficients. A numerical experiment up to n=15 confirms the proposed bounds and an experiment, i.e. the counting of the zeros in the binary representation of an integer for a constant related to the Glaisher-Kinkelin constant is also given up to n=32.
ISSN:2331-8422