Tensor-network strong-disorder renormalization groups for random quantum spin systems in two dimensions

Novel randomness-induced disordered ground states in two-dimensional (2D) quantum spin systems have been attracting much interest. For quantitative analysis of such random quantum spin systems, one of the most promising numerical approaches is the tensor-network strong-disorder renormalization group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-10, Vol.102 (14), Article 144439
Hauptverfasser: Seki, Kouichi, Hikihara, Toshiya, Okunishi, Kouichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Novel randomness-induced disordered ground states in two-dimensional (2D) quantum spin systems have been attracting much interest. For quantitative analysis of such random quantum spin systems, one of the most promising numerical approaches is the tensor-network strong-disorder renormalization group (tSDRG), which was basically established for one-dimensional (1D) systems. In this paper, we propose a possible improvement of its algorithm toward 2D random spin systems, focusing on a generating process of the tree network structure of tensors, and precisely examine their performances for the random antiferromagnetic Heisenberg model not only on the 1D chain but also on the square- and triangular-lattices. On the basis of comparison with the exact numerical results up to 36 site systems, we demonstrate that accuracy of the optimal tSDRG algorithm is significantly improved for the 1D and 2D systems in the strong-randomness regime.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.144439