Seamlessly Splicing Metallic Sn x Mo 1- x S 2 at MoS 2 Edge for Enhanced Photoelectrocatalytic Performance in Microreactor

Accurate design of the 2D metal-semiconductor (M-S) heterostructure via the covalent combination of appropriate metallic and semiconducting materials is urgently needed for fabricating high-performance nanodevices and enhancing catalytic performance. Hence, the lateral epitaxial growth of M-S Sn Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2020-12, Vol.7 (24), p.2002172
Hauptverfasser: Shao, Gonglei, Lu, Yizhen, Hong, Jinhua, Xue, Xiong-Xiong, Huang, Jinqiang, Xu, Zheyuan, Lu, Xiangchao, Jin, Yuanyuan, Liu, Xiao, Li, Huimin, Hu, Sheng, Suenaga, Kazu, Han, Zheng, Jiang, Ying, Li, Shisheng, Feng, Yexin, Pan, Anlian, Lin, Yung-Chang, Cao, Yang, Liu, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate design of the 2D metal-semiconductor (M-S) heterostructure via the covalent combination of appropriate metallic and semiconducting materials is urgently needed for fabricating high-performance nanodevices and enhancing catalytic performance. Hence, the lateral epitaxial growth of M-S Sn Mo S /MoS heterostructure is precisely prepared with in situ growth of metallic Sn Mo S by doping Sn atoms at semiconductor MoS edge via one-step chemical vapor deposition. The atomically sharp interface of this heterostructure exhibits clearly distinguished performance based on a series of characterizations. The oxygen evolution photoelectrocatalytic performance of the epitaxial M-S heterostructure is 2.5 times higher than that of pure MoS in microreactor, attributed to the efficient electron-hole separation and rapid charge transfer. This growth method provides a general strategy for fabricating seamless M-S lateral heterostructures by controllable doping heteroatoms. The M-S heterostructures show increased carrier migration rate and eliminated Fermi level pinning effect, contributing to their potential in devices and catalytic system.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202002172