ON SOME QUESTIONS OF PARTITIO NUMERORUM: TRES CUBI

This paper is concerned with the function r3(n), the number of representations of n as the sum of at most three positive cubes, $$r_3(n) = {\mathrm{card}}\{\mathbf m\in\mathbb Z^3: m_1^3+m_2^3+m_3^3=n, m_j\ge1\}.$$ , Our understanding of this function is surprisingly poor, and we examine various ave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2021-01, Vol.63 (1), p.223-244
1. Verfasser: VAUGHAN, R. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 1
container_start_page 223
container_title Glasgow mathematical journal
container_volume 63
creator VAUGHAN, R. C.
description This paper is concerned with the function r3(n), the number of representations of n as the sum of at most three positive cubes, $$r_3(n) = {\mathrm{card}}\{\mathbf m\in\mathbb Z^3: m_1^3+m_2^3+m_3^3=n, m_j\ge1\}.$$ , Our understanding of this function is surprisingly poor, and we examine various averages of it. In particular $${\sum_{m=1}^nr_3(m),\,\sum_{m=1}^nr_3(m)^2}$$ and $${\sum_{\substack{ n\le x\\ n\equiv a\,\mathrm{mod}\,q }} r_3(n).\}$$
doi_str_mv 10.1017/S0017089520000142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2469961224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089520000142</cupid><sourcerecordid>2469961224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-16661d6fa69a5318e1d0e8e0132adaeaea33ce89dd5627d96c1ae713c7c2ae373</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaJgXf0B3gKeq5mkTRtva-lqYdtqP8BbiU0qu7h2TXYP_ntTdsGDOAMzPGbee8wgdA3kFghEdzVxlcQipMQFBPQEeRBw4YdEvJ4ibxr70_wcXVi7dpA55CFaFrgu8xS_tGndZGVR43KBn-dVkzmEizZPq7Jq83vcVGmNk_Yhu0Rng_yw-urYZ6hdpE3y5C_LxyyZL_2ecrHzgXMOig-SCxkyiDUoomPtjKlUUrtkrNexUCrkNFKC9yB1BKyPeio1i9gM3Rx0t2b82mu769bj3nw6y466ywQHSgO3BYet3ozWGj10W7PaSPPdAemm13R_XuM47MiRmzezUu_6V_p_1g8JNF-O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469961224</pqid></control><display><type>article</type><title>ON SOME QUESTIONS OF PARTITIO NUMERORUM: TRES CUBI</title><source>Cambridge University Press Journals Complete</source><creator>VAUGHAN, R. C.</creator><creatorcontrib>VAUGHAN, R. C.</creatorcontrib><description>This paper is concerned with the function r3(n), the number of representations of n as the sum of at most three positive cubes, $$r_3(n) = {\mathrm{card}}\{\mathbf m\in\mathbb Z^3: m_1^3+m_2^3+m_3^3=n, m_j\ge1\}.$$ , Our understanding of this function is surprisingly poor, and we examine various averages of it. In particular $${\sum_{m=1}^nr_3(m),\,\sum_{m=1}^nr_3(m)^2}$$ and $${\sum_{\substack{ n\le x\\ n\equiv a\,\mathrm{mod}\,q }} r_3(n).\}$$</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089520000142</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cubes</subject><ispartof>Glasgow mathematical journal, 2021-01, Vol.63 (1), p.223-244</ispartof><rights>The Author(s) 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-16661d6fa69a5318e1d0e8e0132adaeaea33ce89dd5627d96c1ae713c7c2ae373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089520000142/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>VAUGHAN, R. C.</creatorcontrib><title>ON SOME QUESTIONS OF PARTITIO NUMERORUM: TRES CUBI</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>This paper is concerned with the function r3(n), the number of representations of n as the sum of at most three positive cubes, $$r_3(n) = {\mathrm{card}}\{\mathbf m\in\mathbb Z^3: m_1^3+m_2^3+m_3^3=n, m_j\ge1\}.$$ , Our understanding of this function is surprisingly poor, and we examine various averages of it. In particular $${\sum_{m=1}^nr_3(m),\,\sum_{m=1}^nr_3(m)^2}$$ and $${\sum_{\substack{ n\le x\\ n\equiv a\,\mathrm{mod}\,q }} r_3(n).\}$$</description><subject>Cubes</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1LxDAQDaJgXf0B3gKeq5mkTRtva-lqYdtqP8BbiU0qu7h2TXYP_ntTdsGDOAMzPGbee8wgdA3kFghEdzVxlcQipMQFBPQEeRBw4YdEvJ4ibxr70_wcXVi7dpA55CFaFrgu8xS_tGndZGVR43KBn-dVkzmEizZPq7Jq83vcVGmNk_Yhu0Rng_yw-urYZ6hdpE3y5C_LxyyZL_2ecrHzgXMOig-SCxkyiDUoomPtjKlUUrtkrNexUCrkNFKC9yB1BKyPeio1i9gM3Rx0t2b82mu769bj3nw6y466ywQHSgO3BYet3ozWGj10W7PaSPPdAemm13R_XuM47MiRmzezUu_6V_p_1g8JNF-O</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>VAUGHAN, R. C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202101</creationdate><title>ON SOME QUESTIONS OF PARTITIO NUMERORUM: TRES CUBI</title><author>VAUGHAN, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-16661d6fa69a5318e1d0e8e0132adaeaea33ce89dd5627d96c1ae713c7c2ae373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VAUGHAN, R. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAUGHAN, R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON SOME QUESTIONS OF PARTITIO NUMERORUM: TRES CUBI</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2021-01</date><risdate>2021</risdate><volume>63</volume><issue>1</issue><spage>223</spage><epage>244</epage><pages>223-244</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>This paper is concerned with the function r3(n), the number of representations of n as the sum of at most three positive cubes, $$r_3(n) = {\mathrm{card}}\{\mathbf m\in\mathbb Z^3: m_1^3+m_2^3+m_3^3=n, m_j\ge1\}.$$ , Our understanding of this function is surprisingly poor, and we examine various averages of it. In particular $${\sum_{m=1}^nr_3(m),\,\sum_{m=1}^nr_3(m)^2}$$ and $${\sum_{\substack{ n\le x\\ n\equiv a\,\mathrm{mod}\,q }} r_3(n).\}$$</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089520000142</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2021-01, Vol.63 (1), p.223-244
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_journals_2469961224
source Cambridge University Press Journals Complete
subjects Cubes
title ON SOME QUESTIONS OF PARTITIO NUMERORUM: TRES CUBI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20SOME%20QUESTIONS%20OF%20PARTITIO%20NUMERORUM:%20TRES%20CUBI&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=VAUGHAN,%20R.%20C.&rft.date=2021-01&rft.volume=63&rft.issue=1&rft.spage=223&rft.epage=244&rft.pages=223-244&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089520000142&rft_dat=%3Cproquest_cross%3E2469961224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469961224&rft_id=info:pmid/&rft_cupid=10_1017_S0017089520000142&rfr_iscdi=true