ON SOME QUESTIONS OF PARTITIO NUMERORUM: TRES CUBI
This paper is concerned with the function r3(n), the number of representations of n as the sum of at most three positive cubes, $$r_3(n) = {\mathrm{card}}\{\mathbf m\in\mathbb Z^3: m_1^3+m_2^3+m_3^3=n, m_j\ge1\}.$$ , Our understanding of this function is surprisingly poor, and we examine various ave...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2021-01, Vol.63 (1), p.223-244 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the function r3(n), the number of representations of n as the sum of at most three positive cubes,
$$r_3(n) = {\mathrm{card}}\{\mathbf m\in\mathbb Z^3: m_1^3+m_2^3+m_3^3=n, m_j\ge1\}.$$
, Our understanding of this function is surprisingly poor, and we examine various averages of it. In particular
$${\sum_{m=1}^nr_3(m),\,\sum_{m=1}^nr_3(m)^2}$$
and
$${\sum_{\substack{ n\le x\\ n\equiv a\,\mathrm{mod}\,q }} r_3(n).\}$$ |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089520000142 |