Epitaxial aluminum plasmonics covering full visible spectrum

Aluminum has attracted a great deal of attention as an alternative plasmonic material to silver and gold because of its natural abundance on Earth, material stability, unique spectral capability in the ultraviolet spectral region, and complementary metal-oxide-semiconductor compatibility. Surprising...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2021-01, Vol.10 (1), p.627-637
Hauptverfasser: Cheng, Chang-Wei, Raja, Soniya S., Chang, Ching-Wen, Zhang, Xin-Quan, Liu, Po-Yen, Lee, Yi-Hsien, Shih, Chih-Kang, Gwo, Shangjr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aluminum has attracted a great deal of attention as an alternative plasmonic material to silver and gold because of its natural abundance on Earth, material stability, unique spectral capability in the ultraviolet spectral region, and complementary metal-oxide-semiconductor compatibility. Surprisingly, in some recent studies, aluminum has been reported to outperform silver in the visible range due to its superior surface and interface properties. Here, we demonstrate excellent structural and optical properties measured for aluminum epitaxial films grown on sapphire substrates by molecular-beam epitaxy under ultrahigh vacuum growth conditions. Using the epitaxial growth technique, distinct advantages can be achieved for plasmonic applications, including high-fidelity nanofabrication and wafer-scale system integration. Moreover, the aluminum film thickness is controllable down to a few atomic monolayers, allowing for plasmonic ultrathin layer devices. Two kinds of aluminum plasmonic applications are reported here, including precisely engineered plasmonic substrates for surface-enhanced Raman spectroscopy and high-quality-factor plasmonic surface lattices based on standing localized surface plasmons and propagating surface plasmon polaritons, respectively, in the entire visible spectrum (400–700 nm).
ISSN:2192-8606
2192-8614
DOI:10.1515/nanoph-2020-0402