Mo4 Ce4 Al7 C3: A nanolamellar ferromagnetic Kondo lattice

Herein we show that Mo4 Ce4 Al7 C3, a recently discovered nanolamellar compound displaying mixed valence, combines Kondo lattice behavior with ferromagnetism. A sizeable magnetization is carried by 3p states of Al as evidenced by a strong x-ray magnetic circular dichroism signal at the K edge of alu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-10, Vol.102 (15), p.1
Hauptverfasser: Barbier, Maxime, Wilhelm, Fabrice, Pinek, Damir, Furuta, Kanji, Ito, Takahiro, Kim, Youngsoo, Magnier, Maëlys, Braithwaite, Daniel, Vališka, Michal, Opagiste, Christine, Barsoum, Michel W, Ohresser, Philippe, Otero, Edwige, Fèvre, Patrick Le, Bertran, François, Garbarino, Gaston, Rogalev, Andrei, Ouisse, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein we show that Mo4 Ce4 Al7 C3, a recently discovered nanolamellar compound displaying mixed valence, combines Kondo lattice behavior with ferromagnetism. A sizeable magnetization is carried by 3p states of Al as evidenced by a strong x-ray magnetic circular dichroism signal at the K edge of aluminum, whereas no detectable signal was observed at the K edge of carbon and L2,3 edges of molybdenum. These results point out that the ferromagnetic behavior originates in the Ce atoms with 4f1 electronic configuration lying within the Al planes. The evolution with pressure of the mixed valence of Ce atoms in the Mo-C planes determined via Ce L3 x-ray-absorption spectra along with the magnetoresistance measurements across the ferromagnetic transition unambiguously reveal a Kondo behavior. Angle-resolved photoemission spectroscopy and density functional theory confirm a certain degree of Ce 4f electron delocalization. More generally, conduction electrons are not restricted to lie in the MoC planes but are also delocalized in the Al planes.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.155121