Data Quality and Trust: Review of Challenges and Opportunities for Data Sharing in IoT
Existing research recognizes the critical role of quality data in the current big-data and Internet of Things (IoT) era. Quality data has a direct impact on model results and hence business decisions. The growth in the number of IoT-connected devices makes it hard to access data quality using tradit...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-12, Vol.9 (12), p.2083 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existing research recognizes the critical role of quality data in the current big-data and Internet of Things (IoT) era. Quality data has a direct impact on model results and hence business decisions. The growth in the number of IoT-connected devices makes it hard to access data quality using traditional assessments methods. This is exacerbated by the need to share data across different IoT domains as it increases the heterogeneity of the data. Data-shared IoT defines a new perspective of IoT applications which benefit from sharing data among different domains of IoT to create new use-case applications. For example, sharing data between smart transport and smart industry can lead to other use-case applications such as intelligent logistics management and warehouse management. The benefits of such applications, however, can only be achieved if the shared data is of acceptable quality. There are three main practices in data quality (DQ) determination approaches that are restricting their effective use in data-shared platforms: (1) most DQ techniques validate test data against a known quantity considered to be a reference; a gold reference. (2) narrow sets of static metrics are used to describe the quality. Each consumer uses these metrics in similar ways. (3) data quality is evaluated in isolated stages throughout the processing pipeline. Data-shared IoT presents unique challenges; (1) each application and use-case in shared IoT has a unique description of data quality and requires a different set of metrics. This leads to an extensive list of DQ dimensions which are difficult to implement in real-world applications. (2) most data in IoT scenarios does not have a gold reference. (3) factors endangering DQ in shared IoT exist throughout the entire big-data model from data collection to data visualization, and data use. This paper aims to describe data-shared IoT and shared data pools while highlighting the importance of sharing quality data across various domains. The article examines how we can use trust as a measure of quality in data-shared IoT. We conclude that researchers can combine such trust-based techniques with blockchain for secure end-to-end data quality assessment. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics9122083 |