An Insight Into the Gibbs Sampler: Keep the Samples or Drop Them?

In this letter, we propose an insight into Markov Chain Monte Carlo (MCMC) algorithms and more precisely the Gibbs sampler. From a didactic toy model, based on a normal bivariate distribution, a non-asymptotic analysis is derived and estimators are fully characterized. It provides a worthwhile and n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Signal Processing Letters 2020-01, Vol.27, p.2069-2073
Hauptverfasser: Boissy, Julien, Giovannelli, Jean-Francois, Minvielle, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we propose an insight into Markov Chain Monte Carlo (MCMC) algorithms and more precisely the Gibbs sampler. From a didactic toy model, based on a normal bivariate distribution, a non-asymptotic analysis is derived and estimators are fully characterized. It provides a worthwhile and non-empirical understanding of the Gibbs sampler behaviour. Issues are investigated, such as the influence of the "burn-in" phase, useful in practice. Especially, the trade-off between discarding samples and integrating them into estimators is studied. On the whole, it leads to an analytical awareness of MCMC sampler.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2020.3038136