Nanonet-nano fiber electrospun mesh of PCL-chitosan for controlled and extended release of diclofenac sodium

Electrospun nanofiber (EN) technology has been used in the past to generate electrostatically charged multilayer-nanofibers. This platform offers versatile applications including in tissue engineering, drug delivery, wound dressings, and high-efficiency particulate air filters. In this study, we syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-12, Vol.12 (46), p.23556-23569
Hauptverfasser: Saudi, Sheikh, Bhattarai, Shanta R, Adhikari, Udhab, Khanal, Shalil, Sankar, Jagannathan, Aravamudhan, Shyam, Bhattarai, Narayan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrospun nanofiber (EN) technology has been used in the past to generate electrostatically charged multilayer-nanofibers. This platform offers versatile applications including in tissue engineering, drug delivery, wound dressings, and high-efficiency particulate air filters. In this study, we synthesized for the first time nanonet-nanofiber electrospun meshes (NNEMs) of polycaprolactone (PCL)-chitosan (CH) using EN technology. The fabricated NNEMs were utilized for high payload delivery and controlled release of a water-soluble drug. Diclofenac Sodium (DS), a hydrophilic anti-inflammatory drug, was selected as a model drug because of its high aqueous solubility and poor compatibility with insoluble polymers. Various compositions of DS drug-loaded NNEMs (DS-NNEMs) were synthesized. The physicochemical properties such as structure, morphology, and aqueous stability and the chemical properties of DS-NNEMs were evaluated. High drug entrapment efficiency and concentration-dependent drug release patterns were investigated for up to 14 days. Furthermore, the biocompatibility of the DS-NNEMs was tested with NIH 3T3 cells. The physicochemical characterization results showed that the DS drug is a key contributing factor in the generation of nanonet-nanofiber networks during electrospinning. DS-NNEMs also enhanced 3T3 cell adhesion, viability, and proliferation in the nanonet-nano fiber network through the controlled release of DS. The presented EN technology-based biodegradable NNEM material is not only limited for the controlled release of hydrophilic anti-inflammatory drugs, but also can be a suitable platform for loading and release of antiviral drugs. A drug-induced nanonet-nano fiber mesh of PCL-chitosan for high entrapment capacity and extended release of hydrophilic drugs.
ISSN:2040-3364
2040-3372
DOI:10.1039/d0nr05968d