Solution to the outstanding case of the spouse‐loving variant of the Oberwolfach problem with uniform cycle length
Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2021-02, Vol.29 (2), p.114-124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 2 |
container_start_page | 114 |
container_title | Journal of combinatorial designs |
container_volume | 29 |
creator | Shanmuga Vadivu, Andiyappan Panneerselvam, Lakshmanan Muthusamy, Appu |
description | Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯+mt. If m1=m2=⋯=mt=m, then the problem is denoted by OP+(n;m). In this paper, we construct a solution to OP+(4m;m) when m≥5 is an odd integer. This completes the proof of the conjecture posed by Bolohan et al. In addition, we find a solution to OP+(3,m) when m≥5 is an odd integer. |
doi_str_mv | 10.1002/jcd.21759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2467644055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467644055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-dc3ddaee0ef931ce60748892264edcf7b1e9f4a1b40a90e44c3c395d886dd25b3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2onjxCMq_6rEAMyRY183qdK42E6rbjwCz8iTkDYwMt2rc777o4PQJSUTSkg8XSo9iWmWiiM0omlMIs4pOe57wpMoTxNxis68XxJChEj4CIVX23Shti0OFocKsO2CD7LVdbvASvpeMAfdr23n4fvzq7GbvbeRrpZt-LNfSnBb2xipKrx2tmxghbd1qHDX1sa6FVY71QBuoF2E6hydGNl4uPitY_R-f_c2e4zmLw9Ps5t5pGKRiUirRGsJQMCIhCrgJGN5LuKYM9DKZCUFYZikJSNSEGBMJSoRqc5zrnWclskYXQ17-48-OvChWNrOtf3JImY844yRNO2p64FSznrvwBRrV6-k2xWUFPtQiz7U4hBqz04Hdls3sPsfLJ5nt8PED5uKe98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467644055</pqid></control><display><type>article</type><title>Solution to the outstanding case of the spouse‐loving variant of the Oberwolfach problem with uniform cycle length</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shanmuga Vadivu, Andiyappan ; Panneerselvam, Lakshmanan ; Muthusamy, Appu</creator><creatorcontrib>Shanmuga Vadivu, Andiyappan ; Panneerselvam, Lakshmanan ; Muthusamy, Appu</creatorcontrib><description>Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯+mt. If m1=m2=⋯=mt=m, then the problem is denoted by OP+(n;m). In this paper, we construct a solution to OP+(4m;m) when m≥5 is an odd integer. This completes the proof of the conjecture posed by Bolohan et al. In addition, we find a solution to OP+(3,m) when m≥5 is an odd integer.</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.21759</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2‐factorization ; complete graph plus a 1‐factor ; Completeness ; Integers ; spouse‐loving variant of the Oberwolfach problem</subject><ispartof>Journal of combinatorial designs, 2021-02, Vol.29 (2), p.114-124</ispartof><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-dc3ddaee0ef931ce60748892264edcf7b1e9f4a1b40a90e44c3c395d886dd25b3</citedby><cites>FETCH-LOGICAL-c2979-dc3ddaee0ef931ce60748892264edcf7b1e9f4a1b40a90e44c3c395d886dd25b3</cites><orcidid>0000-0001-9014-6916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.21759$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.21759$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shanmuga Vadivu, Andiyappan</creatorcontrib><creatorcontrib>Panneerselvam, Lakshmanan</creatorcontrib><creatorcontrib>Muthusamy, Appu</creatorcontrib><title>Solution to the outstanding case of the spouse‐loving variant of the Oberwolfach problem with uniform cycle length</title><title>Journal of combinatorial designs</title><description>Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯+mt. If m1=m2=⋯=mt=m, then the problem is denoted by OP+(n;m). In this paper, we construct a solution to OP+(4m;m) when m≥5 is an odd integer. This completes the proof of the conjecture posed by Bolohan et al. In addition, we find a solution to OP+(3,m) when m≥5 is an odd integer.</description><subject>2‐factorization</subject><subject>complete graph plus a 1‐factor</subject><subject>Completeness</subject><subject>Integers</subject><subject>spouse‐loving variant of the Oberwolfach problem</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2onjxCMq_6rEAMyRY183qdK42E6rbjwCz8iTkDYwMt2rc777o4PQJSUTSkg8XSo9iWmWiiM0omlMIs4pOe57wpMoTxNxis68XxJChEj4CIVX23Shti0OFocKsO2CD7LVdbvASvpeMAfdr23n4fvzq7GbvbeRrpZt-LNfSnBb2xipKrx2tmxghbd1qHDX1sa6FVY71QBuoF2E6hydGNl4uPitY_R-f_c2e4zmLw9Ps5t5pGKRiUirRGsJQMCIhCrgJGN5LuKYM9DKZCUFYZikJSNSEGBMJSoRqc5zrnWclskYXQ17-48-OvChWNrOtf3JImY844yRNO2p64FSznrvwBRrV6-k2xWUFPtQiz7U4hBqz04Hdls3sPsfLJ5nt8PED5uKe98</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Shanmuga Vadivu, Andiyappan</creator><creator>Panneerselvam, Lakshmanan</creator><creator>Muthusamy, Appu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9014-6916</orcidid></search><sort><creationdate>202102</creationdate><title>Solution to the outstanding case of the spouse‐loving variant of the Oberwolfach problem with uniform cycle length</title><author>Shanmuga Vadivu, Andiyappan ; Panneerselvam, Lakshmanan ; Muthusamy, Appu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-dc3ddaee0ef931ce60748892264edcf7b1e9f4a1b40a90e44c3c395d886dd25b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2‐factorization</topic><topic>complete graph plus a 1‐factor</topic><topic>Completeness</topic><topic>Integers</topic><topic>spouse‐loving variant of the Oberwolfach problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanmuga Vadivu, Andiyappan</creatorcontrib><creatorcontrib>Panneerselvam, Lakshmanan</creatorcontrib><creatorcontrib>Muthusamy, Appu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanmuga Vadivu, Andiyappan</au><au>Panneerselvam, Lakshmanan</au><au>Muthusamy, Appu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution to the outstanding case of the spouse‐loving variant of the Oberwolfach problem with uniform cycle length</atitle><jtitle>Journal of combinatorial designs</jtitle><date>2021-02</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>114</spage><epage>124</epage><pages>114-124</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯+mt. If m1=m2=⋯=mt=m, then the problem is denoted by OP+(n;m). In this paper, we construct a solution to OP+(4m;m) when m≥5 is an odd integer. This completes the proof of the conjecture posed by Bolohan et al. In addition, we find a solution to OP+(3,m) when m≥5 is an odd integer.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jcd.21759</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9014-6916</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8539 |
ispartof | Journal of combinatorial designs, 2021-02, Vol.29 (2), p.114-124 |
issn | 1063-8539 1520-6610 |
language | eng |
recordid | cdi_proquest_journals_2467644055 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2‐factorization complete graph plus a 1‐factor Completeness Integers spouse‐loving variant of the Oberwolfach problem |
title | Solution to the outstanding case of the spouse‐loving variant of the Oberwolfach problem with uniform cycle length |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20to%20the%20outstanding%20case%20of%20the%20spouse%E2%80%90loving%20variant%20of%20the%20Oberwolfach%20problem%20with%20uniform%20cycle%20length&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Shanmuga%20Vadivu,%20Andiyappan&rft.date=2021-02&rft.volume=29&rft.issue=2&rft.spage=114&rft.epage=124&rft.pages=114-124&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.21759&rft_dat=%3Cproquest_cross%3E2467644055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467644055&rft_id=info:pmid/&rfr_iscdi=true |