Solution to the outstanding case of the spouse‐loving variant of the Oberwolfach problem with uniform cycle length

Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2021-02, Vol.29 (2), p.114-124
Hauptverfasser: Shanmuga Vadivu, Andiyappan, Panneerselvam, Lakshmanan, Muthusamy, Appu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯+mt. If m1=m2=⋯=mt=m, then the problem is denoted by OP+(n;m). In this paper, we construct a solution to OP+(4m;m) when m≥5 is an odd integer. This completes the proof of the conjecture posed by Bolohan et al. In addition, we find a solution to OP+(3,m) when m≥5 is an odd integer.
ISSN:1063-8539
1520-6610
DOI:10.1002/jcd.21759