Solution to the outstanding case of the spouse‐loving variant of the Oberwolfach problem with uniform cycle length
Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2021-02, Vol.29 (2), p.114-124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Kn+I denote the complete graph of even order with a 1‐factor duplicated. The spouse‐loving variant of the Oberwolfach Problem, denoted OP+(m1,m2,…,mt), asks for the existence of a 2‐factorization of Kn+I in which each 2‐factor consists of cycles of length mi, for all i,1≤i≤t, such that n=m1+m2+⋯+mt. If m1=m2=⋯=mt=m, then the problem is denoted by OP+(n;m). In this paper, we construct a solution to OP+(4m;m) when m≥5 is an odd integer. This completes the proof of the conjecture posed by Bolohan et al. In addition, we find a solution to OP+(3,m) when m≥5 is an odd integer. |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.21759 |