Photocurable platelet rich plasma bioadhesives
Closure of wounds with tissue adhesives has many advantages over sutures, but existing synthetic adhesives are toxic and have poor workability. Blood-derived adhesives display complete resorption but have adhesion too weak for reliable wound dressings. We propose a semi-synthetic design that combine...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2020-11, Vol.117, p.133-141 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Closure of wounds with tissue adhesives has many advantages over sutures, but existing synthetic adhesives are toxic and have poor workability. Blood-derived adhesives display complete resorption but have adhesion too weak for reliable wound dressings. We propose a semi-synthetic design that combines the positive attributes of synthetic and blood-derived tissue adhesives. PAMAM-g-diazirine (PDz) is a rapidly gelling bioadhesive miscible in both aqueous and organic solvents. PDz blended with platelet-rich plasma (PRP) forms PDz/PRP composite, a semi-synthetic formulation that combines PDz's wet tissue adhesion with PRP's potent wound healing properties. Light-activated PDz/PRP bioadhesive composite has similar elasticity to soft tissues and behaves as an induced hemostat—an unmet clinical need for rapid wound dressings. PDz/PRP composite applied to in-vivo full-thickness wounds observed a 25% reduction in inflammation, as assessed by the host-cell response.
[Display omitted] |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2020.09.030 |