Photocurable platelet rich plasma bioadhesives

Closure of wounds with tissue adhesives has many advantages over sutures, but existing synthetic adhesives are toxic and have poor workability. Blood-derived adhesives display complete resorption but have adhesion too weak for reliable wound dressings. We propose a semi-synthetic design that combine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2020-11, Vol.117, p.133-141
Hauptverfasser: Singh, Manisha, Nanda, Himansu Sekhar, Lee, Justin Yin Hao, Wang, Jun Kit, Tan, Nguan Soon, Steele, Terry W.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Closure of wounds with tissue adhesives has many advantages over sutures, but existing synthetic adhesives are toxic and have poor workability. Blood-derived adhesives display complete resorption but have adhesion too weak for reliable wound dressings. We propose a semi-synthetic design that combines the positive attributes of synthetic and blood-derived tissue adhesives. PAMAM-g-diazirine (PDz) is a rapidly gelling bioadhesive miscible in both aqueous and organic solvents. PDz blended with platelet-rich plasma (PRP) forms PDz/PRP composite, a semi-synthetic formulation that combines PDz's wet tissue adhesion with PRP's potent wound healing properties. Light-activated PDz/PRP bioadhesive composite has similar elasticity to soft tissues and behaves as an induced hemostat—an unmet clinical need for rapid wound dressings. PDz/PRP composite applied to in-vivo full-thickness wounds observed a 25% reduction in inflammation, as assessed by the host-cell response. [Display omitted]
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2020.09.030