Subspace Distribution Adaptation Frameworks for Domain Adaptation
Domain adaptation tries to adapt a model trained from a source domain to a different but related target domain. Currently, prevailing methods for domain adaptation rely on either instance reweighting or feature transformation. Unfortunately, instance reweighting has difficulty in estimating the samp...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2020-12, Vol.31 (12), p.5204-5218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5218 |
---|---|
container_issue | 12 |
container_start_page | 5204 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 31 |
creator | Chen, Sentao Han, Le Liu, Xiaolan He, Zongyao Yang, Xiaowei |
description | Domain adaptation tries to adapt a model trained from a source domain to a different but related target domain. Currently, prevailing methods for domain adaptation rely on either instance reweighting or feature transformation. Unfortunately, instance reweighting has difficulty in estimating the sample weights as the dimension increases, whereas feature transformation sometimes fails to make the transformed source and target distributions similar when the cross-domain discrepancy is large. In order to overcome the shortcomings of both methodologies, in this article, we model the unsupervised domain adaptation problem under the generalized covariate shift assumption and adapt the source distribution to the target distribution in a subspace by applying a distribution adaptation function. Accordingly, we propose two frameworks: Bregman-divergence-embedded structural risk minimization (BSRM) and joint structural risk minimization (JSRM). In the proposed frameworks, the subspace distribution adaptation function and the target prediction model are jointly learned. Under certain instantiations, convex optimization problems are derived from both frameworks. Experimental results on the synthetic and real-world text and image data sets show that the proposed methods outperform the state-of-the-art domain adaptation techniques with statistical significance. |
doi_str_mv | 10.1109/TNNLS.2020.2964790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2467298653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8968742</ieee_id><sourcerecordid>2467298653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-1c14737bb0c57d2211325e2c62668a672b81fb38e33e7e4df6c8b5ca2a54fec63</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMottT-AQUpePGyNZm8j6W1KpR6aAVvIZvNwtZutya7iP_e7cMizmUG5psHH0LXBA8JwfphOZ_PFkPAgIegBZMan6EuEAEJUKXOT7V876B-jCvchsBcMH2JOpRozTnmXTRaNGncWucHkyLWoUibuqg2g1Fmt7Xdl9NgS_9VhY84yKswmFSlLf4CV-git-vo-8fcQ2_Tx-X4OZm9Pr2MR7PEUU7qhDjCJJVpih2XGQAhFLgHJ0AIZYWEVJE8pcpT6qVnWS6cSrmzYDnLvRO0h-4Pe7eh-mx8rE1ZROfXa7vxVRMNUKaklkzt0Lt_6Kpqwqb9zgBrT2klOG0pOFAuVDEGn5ttKEobvg3BZufY7B2bnWNzdNwO3R5XN2nps9PIr9EWuDkAhff-1FZaKMmA_gCJ1n8h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467298653</pqid></control><display><type>article</type><title>Subspace Distribution Adaptation Frameworks for Domain Adaptation</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Sentao ; Han, Le ; Liu, Xiaolan ; He, Zongyao ; Yang, Xiaowei</creator><creatorcontrib>Chen, Sentao ; Han, Le ; Liu, Xiaolan ; He, Zongyao ; Yang, Xiaowei</creatorcontrib><description>Domain adaptation tries to adapt a model trained from a source domain to a different but related target domain. Currently, prevailing methods for domain adaptation rely on either instance reweighting or feature transformation. Unfortunately, instance reweighting has difficulty in estimating the sample weights as the dimension increases, whereas feature transformation sometimes fails to make the transformed source and target distributions similar when the cross-domain discrepancy is large. In order to overcome the shortcomings of both methodologies, in this article, we model the unsupervised domain adaptation problem under the generalized covariate shift assumption and adapt the source distribution to the target distribution in a subspace by applying a distribution adaptation function. Accordingly, we propose two frameworks: Bregman-divergence-embedded structural risk minimization (BSRM) and joint structural risk minimization (JSRM). In the proposed frameworks, the subspace distribution adaptation function and the target prediction model are jointly learned. Under certain instantiations, convex optimization problems are derived from both frameworks. Experimental results on the synthetic and real-world text and image data sets show that the proposed methods outperform the state-of-the-art domain adaptation techniques with statistical significance.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.2964790</identifier><identifier>PMID: 31995505</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Adaptation models ; Convex functions ; Convex optimization ; Convexity ; covariate shift ; Divergence ; Domains ; feature transformation ; Minimization ; Optimization ; Prediction models ; Predictive models ; Risk management ; risk minimization ; Risk reduction ; Statistical analysis ; Subspaces ; Training ; Transformations (mathematics) ; unsupervised domain adaptation</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5204-5218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-1c14737bb0c57d2211325e2c62668a672b81fb38e33e7e4df6c8b5ca2a54fec63</citedby><cites>FETCH-LOGICAL-c351t-1c14737bb0c57d2211325e2c62668a672b81fb38e33e7e4df6c8b5ca2a54fec63</cites><orcidid>0000-0002-3692-0728 ; 0000-0003-0560-472X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8968742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8968742$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31995505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Sentao</creatorcontrib><creatorcontrib>Han, Le</creatorcontrib><creatorcontrib>Liu, Xiaolan</creatorcontrib><creatorcontrib>He, Zongyao</creatorcontrib><creatorcontrib>Yang, Xiaowei</creatorcontrib><title>Subspace Distribution Adaptation Frameworks for Domain Adaptation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Domain adaptation tries to adapt a model trained from a source domain to a different but related target domain. Currently, prevailing methods for domain adaptation rely on either instance reweighting or feature transformation. Unfortunately, instance reweighting has difficulty in estimating the sample weights as the dimension increases, whereas feature transformation sometimes fails to make the transformed source and target distributions similar when the cross-domain discrepancy is large. In order to overcome the shortcomings of both methodologies, in this article, we model the unsupervised domain adaptation problem under the generalized covariate shift assumption and adapt the source distribution to the target distribution in a subspace by applying a distribution adaptation function. Accordingly, we propose two frameworks: Bregman-divergence-embedded structural risk minimization (BSRM) and joint structural risk minimization (JSRM). In the proposed frameworks, the subspace distribution adaptation function and the target prediction model are jointly learned. Under certain instantiations, convex optimization problems are derived from both frameworks. Experimental results on the synthetic and real-world text and image data sets show that the proposed methods outperform the state-of-the-art domain adaptation techniques with statistical significance.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>covariate shift</subject><subject>Divergence</subject><subject>Domains</subject><subject>feature transformation</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Risk management</subject><subject>risk minimization</subject><subject>Risk reduction</subject><subject>Statistical analysis</subject><subject>Subspaces</subject><subject>Training</subject><subject>Transformations (mathematics)</subject><subject>unsupervised domain adaptation</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMottT-AQUpePGyNZm8j6W1KpR6aAVvIZvNwtZutya7iP_e7cMizmUG5psHH0LXBA8JwfphOZ_PFkPAgIegBZMan6EuEAEJUKXOT7V876B-jCvchsBcMH2JOpRozTnmXTRaNGncWucHkyLWoUibuqg2g1Fmt7Xdl9NgS_9VhY84yKswmFSlLf4CV-git-vo-8fcQ2_Tx-X4OZm9Pr2MR7PEUU7qhDjCJJVpih2XGQAhFLgHJ0AIZYWEVJE8pcpT6qVnWS6cSrmzYDnLvRO0h-4Pe7eh-mx8rE1ZROfXa7vxVRMNUKaklkzt0Lt_6Kpqwqb9zgBrT2klOG0pOFAuVDEGn5ttKEobvg3BZufY7B2bnWNzdNwO3R5XN2nps9PIr9EWuDkAhff-1FZaKMmA_gCJ1n8h</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Sentao</creator><creator>Han, Le</creator><creator>Liu, Xiaolan</creator><creator>He, Zongyao</creator><creator>Yang, Xiaowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3692-0728</orcidid><orcidid>https://orcid.org/0000-0003-0560-472X</orcidid></search><sort><creationdate>20201201</creationdate><title>Subspace Distribution Adaptation Frameworks for Domain Adaptation</title><author>Chen, Sentao ; Han, Le ; Liu, Xiaolan ; He, Zongyao ; Yang, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-1c14737bb0c57d2211325e2c62668a672b81fb38e33e7e4df6c8b5ca2a54fec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>covariate shift</topic><topic>Divergence</topic><topic>Domains</topic><topic>feature transformation</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Risk management</topic><topic>risk minimization</topic><topic>Risk reduction</topic><topic>Statistical analysis</topic><topic>Subspaces</topic><topic>Training</topic><topic>Transformations (mathematics)</topic><topic>unsupervised domain adaptation</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sentao</creatorcontrib><creatorcontrib>Han, Le</creatorcontrib><creatorcontrib>Liu, Xiaolan</creatorcontrib><creatorcontrib>He, Zongyao</creatorcontrib><creatorcontrib>Yang, Xiaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Sentao</au><au>Han, Le</au><au>Liu, Xiaolan</au><au>He, Zongyao</au><au>Yang, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace Distribution Adaptation Frameworks for Domain Adaptation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>5204</spage><epage>5218</epage><pages>5204-5218</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Domain adaptation tries to adapt a model trained from a source domain to a different but related target domain. Currently, prevailing methods for domain adaptation rely on either instance reweighting or feature transformation. Unfortunately, instance reweighting has difficulty in estimating the sample weights as the dimension increases, whereas feature transformation sometimes fails to make the transformed source and target distributions similar when the cross-domain discrepancy is large. In order to overcome the shortcomings of both methodologies, in this article, we model the unsupervised domain adaptation problem under the generalized covariate shift assumption and adapt the source distribution to the target distribution in a subspace by applying a distribution adaptation function. Accordingly, we propose two frameworks: Bregman-divergence-embedded structural risk minimization (BSRM) and joint structural risk minimization (JSRM). In the proposed frameworks, the subspace distribution adaptation function and the target prediction model are jointly learned. Under certain instantiations, convex optimization problems are derived from both frameworks. Experimental results on the synthetic and real-world text and image data sets show that the proposed methods outperform the state-of-the-art domain adaptation techniques with statistical significance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31995505</pmid><doi>10.1109/TNNLS.2020.2964790</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3692-0728</orcidid><orcidid>https://orcid.org/0000-0003-0560-472X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5204-5218 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2467298653 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation models Convex functions Convex optimization Convexity covariate shift Divergence Domains feature transformation Minimization Optimization Prediction models Predictive models Risk management risk minimization Risk reduction Statistical analysis Subspaces Training Transformations (mathematics) unsupervised domain adaptation |
title | Subspace Distribution Adaptation Frameworks for Domain Adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace%20Distribution%20Adaptation%20Frameworks%20for%20Domain%20Adaptation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chen,%20Sentao&rft.date=2020-12-01&rft.volume=31&rft.issue=12&rft.spage=5204&rft.epage=5218&rft.pages=5204-5218&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.2964790&rft_dat=%3Cproquest_RIE%3E2467298653%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467298653&rft_id=info:pmid/31995505&rft_ieee_id=8968742&rfr_iscdi=true |