Subspace Distribution Adaptation Frameworks for Domain Adaptation
Domain adaptation tries to adapt a model trained from a source domain to a different but related target domain. Currently, prevailing methods for domain adaptation rely on either instance reweighting or feature transformation. Unfortunately, instance reweighting has difficulty in estimating the samp...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2020-12, Vol.31 (12), p.5204-5218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Domain adaptation tries to adapt a model trained from a source domain to a different but related target domain. Currently, prevailing methods for domain adaptation rely on either instance reweighting or feature transformation. Unfortunately, instance reweighting has difficulty in estimating the sample weights as the dimension increases, whereas feature transformation sometimes fails to make the transformed source and target distributions similar when the cross-domain discrepancy is large. In order to overcome the shortcomings of both methodologies, in this article, we model the unsupervised domain adaptation problem under the generalized covariate shift assumption and adapt the source distribution to the target distribution in a subspace by applying a distribution adaptation function. Accordingly, we propose two frameworks: Bregman-divergence-embedded structural risk minimization (BSRM) and joint structural risk minimization (JSRM). In the proposed frameworks, the subspace distribution adaptation function and the target prediction model are jointly learned. Under certain instantiations, convex optimization problems are derived from both frameworks. Experimental results on the synthetic and real-world text and image data sets show that the proposed methods outperform the state-of-the-art domain adaptation techniques with statistical significance. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2020.2964790 |