Gradient estimates for the constant mean curvature equation in hyperbolic space
We establish gradient estimates for solutions to the Dirichlet problem for the constant mean curvature equation in hyperbolic space. We obtain these estimates on bounded strictly convex domains by using the maximum principles theory of Φ-functions of Payne and Philippin. These estimates are then emp...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2020-12, Vol.150 (6), p.3216-3230 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish gradient estimates for solutions to the Dirichlet problem for the constant mean curvature equation in hyperbolic space. We obtain these estimates on bounded strictly convex domains by using the maximum principles theory of Φ-functions of Payne and Philippin. These estimates are then employed to solve the Dirichlet problem when the mean curvature H satisfies H < 1 under suitable boundary conditions. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/prm.2019.71 |