Probing the Neuraminidase Activity of Influenza Virus Using a Cytolysin A Protein Nanopore

Neuraminidase (NA), one of the major surface glycoproteins of influenza A virus (IAV), is an important diagnostic biomarker and antiviral therapeutic target. Cytolysin A (ClyA) is a nanopore sensor with an internal constriction of 3.3 nm, enabling the detection of protein conformations at the single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-11, Vol.92 (21), p.14303-14308
Hauptverfasser: Kwak, Dong-Kyu, Kim, Jin-Sik, Lee, Mi-Kyung, Ryu, Kyoung-Seok, Chi, Seung-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuraminidase (NA), one of the major surface glycoproteins of influenza A virus (IAV), is an important diagnostic biomarker and antiviral therapeutic target. Cytolysin A (ClyA) is a nanopore sensor with an internal constriction of 3.3 nm, enabling the detection of protein conformations at the single-molecule level. In this study, a nanopore-based approach is developed for analysis of the enzymatic activity of NA, which facilitates rapid and highly sensitive diagnosis of IAV. Current blockade analysis of the d-glucose/d-galactose-binding protein (GBP) trapped within a type I ClyA-AS (ClyA mutant) nanopore reveals that galactose cleaved from sialyl-galactose by NA of the influenza virus can be detected in real time and at the single-molecule level. Our results show that this nanopore sensor can quantitatively measure the activity of NA with 40–80-fold higher sensitivity than those previously reported. Furthermore, the inhibition of NA is monitored using small-molecule antiviral drugs, such as zanamivir. Taken together, our results reveal that the ClyA protein nanopore can be a valuable platform for the rapid and sensitive point-of-care diagnosis of influenza and for drug screening against the NA target.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c03399