Investigation of a trifold interaction mechanism of shock, vortex, and dust using a DG method in a two-fluid model framework

We investigate a trifold interaction mechanism of shock, vortex, and dust by solving the dusty Schardin's problem. A modal discontinuous Galerkin method was developed for solving the two-fluid model of the dusty gases. We focused on larger-scale wave patterns and smaller-scale vortexlets under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2020-09, Vol.374, p.121-138
Hauptverfasser: Ejtehadi, Omid, Rahimi, Amin, Myong, R.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate a trifold interaction mechanism of shock, vortex, and dust by solving the dusty Schardin's problem. A modal discontinuous Galerkin method was developed for solving the two-fluid model of the dusty gases. We focused on larger-scale wave patterns and smaller-scale vortexlets under the addition of dust particles. The dynamics of the shock-vortex interaction in a dusty medium was found substantially different from a pure gas equivalent. The main differences are the acceleration or deceleration of the shock waves, and attenuation or diminishing of the slip lines. It was also demonstrated how the solid phase with various particulate loadings and particle diameters affects the dynamics of the vortexlets. Two different trends related to the transient formation and attenuation of the main vortex and vortexlets were identified. It was shown that the enstrophy behavior is directly affected by the diameter and particulate loading of particles that are seeded in the domain. [Display omitted]
ISSN:0032-5910
1873-328X
DOI:10.1016/j.powtec.2020.07.041