Extension of Compositional Space to the Ternary in Alloy Chiral Nanoparticles through Galvanic Replacement Reactions

Metal chiral nanoparticles (CNPs), composed of atomically chiral lattices, are an emerging chiral nanomaterial showing unique asymmetric properties. Chirality transmission from the host CNPs mediated with galvanic replacement reactions (GRRs) has been carried out to extend their compositional space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2020-12, Vol.7 (23), p.2001321-n/a, Article 2001321
Hauptverfasser: Ni, Ziyue, Zhu, Yuanmin, Liu, Junjun, Yang, Lin, Sun, Peng, Gu, Meng, Huang, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal chiral nanoparticles (CNPs), composed of atomically chiral lattices, are an emerging chiral nanomaterial showing unique asymmetric properties. Chirality transmission from the host CNPs mediated with galvanic replacement reactions (GRRs) has been carried out to extend their compositional space from the unary to binary. Further compositional extension to, e.g., the ternary is of fundamental interest and in practical demand. Here, layer‐by‐layer glancing angle deposition is used to dope galvanically “inert” dopant Au in the host Cu CNPs to generate binary Cu:Au CNPs. The “inert” dopants serve as structural scaffold to assist the chirality transmission from the host to the third metals (M: Pt and Ag) cathodically precipitating in the CNPs, enabling the formation of polycrystalline ternary Cu:Au:M CNPs whose compositions are tailored with engineering the GRR duration. More scaffold Au atoms are favored for the faster chirality transfer, and the Au‐assisted chirality transfer follows the first‐order kinetics with the reaction rate coefficient of ≈0.3 h−1 at room temperature. This work provides further understanding of the GRR‐mediated chirality transfer and paves the way toward enhancing the application functions in enantiodifferentiation, enantioseperation, asymmetric catalysis, bioimaging, and biodetection. Galvanic replacement of binary Cu:Au chiral nanoparticles (CNPs), where galvanically “inert” Au serves as structural scaffolds, results in chirality transfer from the binary CNPs to generate ternary Cu:Au:Pt and Cu:Au:Ag CNPs that inherently have optical activity. The Au‐assisted chirality transfer follows first‐order kinetics with a reaction rate coefficient of ≈0.3 h−1 at room temperature.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202001321