Structure preserving model order reduction of shallow water equations
In this paper, we present two different approaches for constructing reduced‐order models (ROMs) for the two‐dimensional shallow water equation (SWE). The first one is based on the noncanonical Hamiltonian/Poisson form of the SWE. After integration in time by the fully implicit average vector field m...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-01, Vol.44 (1), p.476-492 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 1 |
container_start_page | 476 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Karasözen, Bülent Yıldız, Süleyman Uzunca, Murat |
description | In this paper, we present two different approaches for constructing reduced‐order models (ROMs) for the two‐dimensional shallow water equation (SWE). The first one is based on the noncanonical Hamiltonian/Poisson form of the SWE. After integration in time by the fully implicit average vector field method, ROMs are constructed with proper orthogonal decomposition(POD)/discrete empirical interpolation method that preserves the Hamiltonian structure. In the second approach, the SWE as a partial differential equation with quadratic nonlinearity is integrated in time by the linearly implicit Kahan's method, and ROMs are constructed with the tensorial POD that preserves the linear‐quadratic structure of the SWE. We show that in both approaches, the invariants of the SWE such as the energy, enstrophy, mass and circulation are preserved over a long period of time, leading to stable solutions. We conclude by demonstrating the accuracy and the computational efficiency of the reduced solutions by a numerical test problem. |
doi_str_mv | 10.1002/mma.6751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2465902190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465902190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-669ef74ecaf0506e6b95d1de36924b4a45c7530fbb00ec50e4efd4b921451e063</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpSDyCJRaWlLNjO3isqlKQWjEAs-UkZ0iV1K2dUPXtcSkr0w3_p7vTT8gtgwkD4A9dZyeqkOyMjBhonTFRqHMyAlZAJjgTl-QqxjUAPDLGR2T-1oeh6oeAdBswYvhuNp-08zW21IcaAw1YJ9D4DfWOxi_btn5P97ZPEe4Ge0ziNblwto148zfH5ONp_j57zpavi5fZdJlVXOcsU0qjKwRW1oEEharUsmY15kpzUQorZFXIHFxZAmAlAQW6WpQ6vS0ZgsrH5O60dxv8bsDYm7UfwiadNFwoqYEzDUndn1QVfIwBndmGprPhYBiYY0kmlWSOJSWanei-afHwrzOr1fTX_wBYgWhj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465902190</pqid></control><display><type>article</type><title>Structure preserving model order reduction of shallow water equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Karasözen, Bülent ; Yıldız, Süleyman ; Uzunca, Murat</creator><creatorcontrib>Karasözen, Bülent ; Yıldız, Süleyman ; Uzunca, Murat</creatorcontrib><description>In this paper, we present two different approaches for constructing reduced‐order models (ROMs) for the two‐dimensional shallow water equation (SWE). The first one is based on the noncanonical Hamiltonian/Poisson form of the SWE. After integration in time by the fully implicit average vector field method, ROMs are constructed with proper orthogonal decomposition(POD)/discrete empirical interpolation method that preserves the Hamiltonian structure. In the second approach, the SWE as a partial differential equation with quadratic nonlinearity is integrated in time by the linearly implicit Kahan's method, and ROMs are constructed with the tensorial POD that preserves the linear‐quadratic structure of the SWE. We show that in both approaches, the invariants of the SWE such as the energy, enstrophy, mass and circulation are preserved over a long period of time, leading to stable solutions. We conclude by demonstrating the accuracy and the computational efficiency of the reduced solutions by a numerical test problem.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6751</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>discrete empirical interpolation ; Fields (mathematics) ; finite‐difference methods ; Interpolation ; linearly implicit methods ; Model reduction ; Partial differential equations ; preservation of invariants ; Proper Orthogonal Decomposition ; Quadratic equations ; Shallow water equations ; tensorial proper orthogonal decomposition</subject><ispartof>Mathematical methods in the applied sciences, 2021-01, Vol.44 (1), p.476-492</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-669ef74ecaf0506e6b95d1de36924b4a45c7530fbb00ec50e4efd4b921451e063</citedby><cites>FETCH-LOGICAL-c2931-669ef74ecaf0506e6b95d1de36924b4a45c7530fbb00ec50e4efd4b921451e063</cites><orcidid>0000-0001-5262-063X ; 0000-0003-1037-5431 ; 0000-0001-7904-605X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6751$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6751$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Karasözen, Bülent</creatorcontrib><creatorcontrib>Yıldız, Süleyman</creatorcontrib><creatorcontrib>Uzunca, Murat</creatorcontrib><title>Structure preserving model order reduction of shallow water equations</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we present two different approaches for constructing reduced‐order models (ROMs) for the two‐dimensional shallow water equation (SWE). The first one is based on the noncanonical Hamiltonian/Poisson form of the SWE. After integration in time by the fully implicit average vector field method, ROMs are constructed with proper orthogonal decomposition(POD)/discrete empirical interpolation method that preserves the Hamiltonian structure. In the second approach, the SWE as a partial differential equation with quadratic nonlinearity is integrated in time by the linearly implicit Kahan's method, and ROMs are constructed with the tensorial POD that preserves the linear‐quadratic structure of the SWE. We show that in both approaches, the invariants of the SWE such as the energy, enstrophy, mass and circulation are preserved over a long period of time, leading to stable solutions. We conclude by demonstrating the accuracy and the computational efficiency of the reduced solutions by a numerical test problem.</description><subject>discrete empirical interpolation</subject><subject>Fields (mathematics)</subject><subject>finite‐difference methods</subject><subject>Interpolation</subject><subject>linearly implicit methods</subject><subject>Model reduction</subject><subject>Partial differential equations</subject><subject>preservation of invariants</subject><subject>Proper Orthogonal Decomposition</subject><subject>Quadratic equations</subject><subject>Shallow water equations</subject><subject>tensorial proper orthogonal decomposition</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpSDyCJRaWlLNjO3isqlKQWjEAs-UkZ0iV1K2dUPXtcSkr0w3_p7vTT8gtgwkD4A9dZyeqkOyMjBhonTFRqHMyAlZAJjgTl-QqxjUAPDLGR2T-1oeh6oeAdBswYvhuNp-08zW21IcaAw1YJ9D4DfWOxi_btn5P97ZPEe4Ge0ziNblwto148zfH5ONp_j57zpavi5fZdJlVXOcsU0qjKwRW1oEEharUsmY15kpzUQorZFXIHFxZAmAlAQW6WpQ6vS0ZgsrH5O60dxv8bsDYm7UfwiadNFwoqYEzDUndn1QVfIwBndmGprPhYBiYY0kmlWSOJSWanei-afHwrzOr1fTX_wBYgWhj</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Karasözen, Bülent</creator><creator>Yıldız, Süleyman</creator><creator>Uzunca, Murat</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5262-063X</orcidid><orcidid>https://orcid.org/0000-0003-1037-5431</orcidid><orcidid>https://orcid.org/0000-0001-7904-605X</orcidid></search><sort><creationdate>20210115</creationdate><title>Structure preserving model order reduction of shallow water equations</title><author>Karasözen, Bülent ; Yıldız, Süleyman ; Uzunca, Murat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-669ef74ecaf0506e6b95d1de36924b4a45c7530fbb00ec50e4efd4b921451e063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>discrete empirical interpolation</topic><topic>Fields (mathematics)</topic><topic>finite‐difference methods</topic><topic>Interpolation</topic><topic>linearly implicit methods</topic><topic>Model reduction</topic><topic>Partial differential equations</topic><topic>preservation of invariants</topic><topic>Proper Orthogonal Decomposition</topic><topic>Quadratic equations</topic><topic>Shallow water equations</topic><topic>tensorial proper orthogonal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karasözen, Bülent</creatorcontrib><creatorcontrib>Yıldız, Süleyman</creatorcontrib><creatorcontrib>Uzunca, Murat</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karasözen, Bülent</au><au>Yıldız, Süleyman</au><au>Uzunca, Murat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure preserving model order reduction of shallow water equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>476</spage><epage>492</epage><pages>476-492</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we present two different approaches for constructing reduced‐order models (ROMs) for the two‐dimensional shallow water equation (SWE). The first one is based on the noncanonical Hamiltonian/Poisson form of the SWE. After integration in time by the fully implicit average vector field method, ROMs are constructed with proper orthogonal decomposition(POD)/discrete empirical interpolation method that preserves the Hamiltonian structure. In the second approach, the SWE as a partial differential equation with quadratic nonlinearity is integrated in time by the linearly implicit Kahan's method, and ROMs are constructed with the tensorial POD that preserves the linear‐quadratic structure of the SWE. We show that in both approaches, the invariants of the SWE such as the energy, enstrophy, mass and circulation are preserved over a long period of time, leading to stable solutions. We conclude by demonstrating the accuracy and the computational efficiency of the reduced solutions by a numerical test problem.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6751</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5262-063X</orcidid><orcidid>https://orcid.org/0000-0003-1037-5431</orcidid><orcidid>https://orcid.org/0000-0001-7904-605X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-01, Vol.44 (1), p.476-492 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2465902190 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | discrete empirical interpolation Fields (mathematics) finite‐difference methods Interpolation linearly implicit methods Model reduction Partial differential equations preservation of invariants Proper Orthogonal Decomposition Quadratic equations Shallow water equations tensorial proper orthogonal decomposition |
title | Structure preserving model order reduction of shallow water equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20preserving%20model%20order%20reduction%20of%20shallow%20water%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Karas%C3%B6zen,%20B%C3%BClent&rft.date=2021-01-15&rft.volume=44&rft.issue=1&rft.spage=476&rft.epage=492&rft.pages=476-492&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6751&rft_dat=%3Cproquest_cross%3E2465902190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465902190&rft_id=info:pmid/&rfr_iscdi=true |